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PERTURBATION SOLUTIONS FOR THE INFLUENCE OF
FORWARD FLIGHT ON HELICOPTER ROTOR
FLAPPING STABILITY
By Wayne Johnson*

U. S, Army Air Mobility R&D Laboratory
Moffett Field, Calif., 94035

SUMMARY

The stability of the flapping motion of a helicopter rotor blade in
forward flight is investigated, using a perturbation technique which gives
analytic expressions for the eigenvalues, including the influence of the peri-
odic aerodynamic forces in forward flight. The perturbation solutions are
based on small advance ratio u (the ratio of the helicopter forward speed to
the rotor tip sneed). The results are valid to approximately u = 2 §, which
covers the forward speed range of most helicopters. The rotor configurations
considered are a single, independent blade; a teetering rotor; a gimballed
rotor with three, four, and five or more blades; and a rotor with N
independent blades. The eigenvalues of a constant coefficient approximation
to the flapping equation are obtained by an expansion in u, and are compared
with the perturbation solution including the periodic coefficients. The con-
stant coefficient approximation with the equations and degrees of freedom in
the nonrotating frame represents the flap dynamic reasonably well for the
lower frequency modes, although it cannot, of course, be completely correct.
The transfer function of the rotor flap response to sinusoidal pitch input is
examined, as an alternative to the eigenvalues as a representation of the
dynamic characteristics of the flap motion.

INTRODUCTION

The fundamental motion of helicopter rotor blade is flapping motion:
first mode out of plane (vertical) displacement from the plane of rotation of
the rotor, For an articulated rotor this motion is rigid body rotation of the
blade about a hinge at or near the center of rotation. For a cantilever rotor
it is elastic bending motion, primarily about flexibility at the blade root.
Due to the high centrifugal forces on the blade, the mode shape for first mode
bending of a blade with cantilever root restraint is nearly the same as for
the rigid body flap motion of a hinged blade; it is the difference in the
natural frequencies of the cantilever and articulated blades; that is, of
primary significance for the flap dynamics. This flapping motion of the rotor
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has & basic role in helicopter stability and control, blade loads, vibration,
and in most other areas of helicopter behavior. An important aspect of heli-
copter rotor flapping dynamics is the dynamic stability of the motion in for-
ward flight., Besides the question of high speed stability, this topic also is
of interest for its implications on the decay of transient motions of the
blade, for example, in response to control inputs or aerodynamic gusts. Any
significant degradation of the blade stability and response to control due to
forward speed will have important effects on all aspects of the helicopter
behavior.

In hover (zero forward speed), the aerodynamic forces on the rotor blade
provide the flap motion with high damping, hence, good stability and fast
response. The motion of the blade in hover is describable by constant coeffi-
cient linear differential equations, which may be analyzed to obtain the
dynamic behavior by the standard methods of linear system theory. In forward
flight however, the aerodynamic forces on the blade introduce time varying -
specifically, periodic around the rotor azimuth - coefficients into the linear
differential equations describing the flap motion. These periodic coeffi-
cients are due to the once-per-revolution variation of the free stream veloc-
ity seen by the rotating blade when the helicopter has forward speed. Systems
described by periodic coefficient equations require a considerably more
involved analysis in order to investigate their stability and response to con-
trol. Appendix A discusses the behavior characteristic of periodic coeffi-
cient systems, and presents some of the results of the mat' ematical theory of
such systems. Often a direct numerical integration of the equations of motion
is used as either the most or the only practical solution method; the mathe-
matical theory of periodic coefficient equations has also been used for the
analysis of rotor dynamics in forward flight.

The flapping stability of a rotor in forward flight has been investigated
in a number of publications (refs. 1-20). The primary reason for the frequent
reexamination of this one problem is the search for a satisfactory technique
for the treatment of the influence of the periodic coefficients in the differ-
ential equations, for even to determine the stability of such an equation is a
much more difficult mathematical problem than with constant coefficients.
Usually the flap stability has been determined by numerically integrating the
equations of motion, and then using the results of Floquet theory to find the
eigenvalues (roots) from the transient solution over one period (refs. 2, 4,
5, 7, 10, 12, 13, and 18; the references usually describe the mathematical
theory required for the method). There have also been a number of solutions
using the methods of perturbation theory (refs. 3, 6, 9, 14-17), using an
analog computer to solve the equation (refs. 8, 11, and 20), and a solution
using the classical methods of the analysis of Hill's equation (ref. 1). The
reverse flow region of the rotor is important in very high speed forward
flight, and several investigations have considered the aerodynamics of reverse
flow and its impact on the flapping stability (refs. 5, 7, 8, 11, 12, 14, 15,
and 19). Pitch/flap coupling of the blade motion is another import factor
which has been treated (refs. 2, 3, 8, 12, 14, 15, and 17). A number of the
studies have extended the stability analysis by adding other degrees of
freedom besides rigid flapping to the blade motion description: flapwise
elastic bending of the blade (refs. 4, 5), blade torsion (refs. 5, 9, 11),
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blade lag motion (refs. 10, 16), or the flap motion of the other blades of the
rotor (ref. 13). There is, however, still work that may be done with just the
problem of flapping stability, particularly since most of these studies have
only presented numerical results.

This report investigates the effect of forward speed on the helicopter
rotor flapping stability and response to control. A solution for the stability
is obtained by a perturbation technique which is reasonably straightforward,
and which provides analytic expressions for the eigenvalues of the flap
motion. The solution method is direct enough so that it is possible to con-
sider here a number of rotor configurations, in addition to the problem of a
single independent blade which is the subject of most of the literature. The
perturbation method to be used here is known as the method of multiple time
scales. It is described briefly in Appendix B, but in fact the method is best
discussed by example, of which there will be several here. For more informa~
tion on the mathematics of this perturbation technique and others, the reader
is directed to reference 21 (and to ref. 14, which discusses the techniques
specifically in the context of the problem of rotor flapping stability). For
the speed range of most helicopters, the advance ratio u (the ratio of the
helicopter forward speed to the rotor tip speed) is a small parameter; a maxi-
mum of u = 0.4 to 0.5 may be assumed. Therefore, a perturbation solution
based on small u may be expected to be applicable over the entire range of
interest for most helicopters. Most of the present work will be concerned
with the small u results, although the stability at high u (around 1.0 to
2.5) will be briefly discussed. For the range of speed involving small
advance ratio, u = 0.0 to 0.5 or so, a perturbation solution to order w2 is
satisfactory. It is therefore possible to neglect the effects of the reverse
flow region on the rotor (since they are of higher order than u2 - see
ref. 8), which results in a considerable simplification of the aerodynamic
forces which must be considered.

With the great difficulties involved in the mathematical analysis of
periodic coefficient differential equations, it is natural to consider the use
of a constant coefficient approximation to the equations describing the sys-
tem. That is, the periodic coefficients are replaced by their averagc values,
so the equations of motion are reduced to constant coefficient equations which
may be easily analyzed by the standard techniques. The validity and applica-
bility of the constant coefficient approximation to several of the rotor con-
figurations considered here will be investigated. An expansion of the
eigenvalues for small u will be found, for comparison with the perturbation
solutions including the periodic coefficients.

The following topics will be considered in this report. First, the
stability of the flap motion of an independent blade will be investigated;
that is, the case of a rotor with a fixed shaft, so that the motion of any one
blade is independent of that of the other blades of the rotor. A perturbation
solution (for small u) will be found for the influence of forward flight on
the eigenvalues. This analysis will be followed by a summary, which will
collect the results for the eigenvalues. The behavior of these results will
be discussed, and examples given of their application. Next the flap stabil-
ity of a teetering rotor will be investigated, followed by a summary and
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discussion of the results. Then a gimballed rotor will be considered, for the
cases of three, four, and five or more blades. The description and behavior
in the nonrotating frame of &« rotor with N independent blades will be given;
it is more appropriate to make the constant coefficient approximation in the
nonrotating frame since some of the influence of the rotating periodic coeffi-
cients is retained. Next, the constant coefficient approximation in the
rotating and nonrotating frames will be considered, and the results compared
with the solution including the periodic coefficient influence. Then the
transfer function, that is, the response of the flap motion to sinusoidal con-
trol inputs, will be investigated, including the influence of the periodic
aerodynamic forces in forward flight, The transfer function is an alternative
to the eigenvalues as a representation of the dynamic characteristics of the
system., Finally, some of the previous work with this problem will be

discussed.

NOMENCLATURE
A constant in the order u solution for B8
C1,C2 constants for the 1/rev critical region -
D secular equation parameter, defining the root behavior near

the critical regions

H transfer function
i /-1 j
Kp pitch/flap feedback gain, Kp = tan &3
m blade index, m = 1, . , ., N
Mé flap moment due to flapping velocity 8
Mg flap moment due to flapping displacement 8 §
Mg flap moment due to pitch control 6 i
N number of blades -
r blade radial station
R blade radius
8 blade flap degree of freedom
B0,B1sB2sess coefficients in expansion of B as series in u
Bic rotor tip path plane pitch degree of freedom
4




B1s rotor tip path plane roll degree of freedom
Bo rotor coning mode degree of freedom
[ vector of Bj¢,B;s degrees of freedom
Y lock number of the blade iﬁ
! YorYyaYgseeo coefficients in expansion of y as series in
83 pitch/flap coupling paramete: ,;p
Aw) denominator of the hover transfer function
8y Y - Y - .
: P air density
?’ n blade flap mode shape
0 blade pitch control
‘ A eigenvalue =
| Ao order 1 eigenvalue (the hover limit)
: Lo u advance ratio, helicopter forward speed divided by rotor tip
} , speed
; ' Heorner 4 at boundary of critical region
5 A Mk, corner u for 1/rev critical region
; v blade flap natural frequency (rotating, per rev)

.J L] blade azimuth angle; nondimensional time variable .
E Vos¥ya¥a,s.e. time scales, ¥, = u"y % :
! Y azimuth angle of the mth blade i
' w frequency 3

Q Totor rotational speed :
i, ;v‘ ' O complex conjugate; for the transfer functions, magnitude of
the input and response
(.) time derivative (when dimensionless, the derivative with

respect to )
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The equations and parameters used in this analysis are dimensionless,
based on the air density p, the rotor rotation speed Q, and the rotor
radius R.

PERTURBATION SOLUTION FOR HELICOPTER ROTOR FLAPPING STABILITY

Equation of Motion

Consider the first mode flap motion of a single blade of a helicopter
rotor. The rotor shaft is fixed so there is no coupling of the blades through
the shaft or control system. Then each blade is independent of the motion of
the other blades. The equation describing the flap motion in the rotating
frame is

T )
B+ v2g = y[mss + M8+ M (0 K}JB)] (1)

This is the equation for small perturbations of the flap motion from a trim
state. Only blade pitch control (also a perturbation from the trim state,
that is, cyclic and collective control as required for the given thrust and
forward speed) is included as an input. The degree of freedom rvpresenting
the perturbed flap motion is B. For an articulated rotor 8 is the angle of
rotation of the blade about the flap hinge. In general, (i.e., for a canti-
lever rotor, or an articulated blade with flap hinge offset) the blade out of
plane deflection is 8n, where n(r) is the mode shape of first mode flapping,
normalized to unity at the tip (at r = 1). The blade pitch control perturba-
tion is 6; it is input by the control system, as rigid pitch motion of the
blade about a feathering axis at the blade root. So 68 is the pitch change
of the blade all along its span. The dot denotes the derivative with respect
to the blade azimuth angle ¢, which is the nondimensional time variable.

The first term on the left-hand side of equation (1), g, is the flapping
inertia. The second term, v2g8, is the flap spring, which has structural and
centrifugal contributions. The parameter v is the rotating natural fre-
quency of the flap motion (per rev since frequencies are nondimensionalized by
Q). For an articulated blade, that is, a flap hinge with no offset or spring
restrain, v = 1; this is entirely the centrifugal stiffening. A blade with
structural restraint (cantilever root, or a hinge spring), or with the flap
hinge offset from the center of rotation, has v > 1; v = 1,1 to 1.15 is
typical of a cantilever rotor, and v = 1,03 to 1.05 for an articulated rotor
with hinge offset. The right-hand side of equation (1) is composed of the
aerodynamic flap moments, due to the flapping velocity and displacement, and
the blade pitch control. Mechanical pitch/flap coupling is included, tha* is,
feedback control of the form 46 = -KpB. This feedback is usually accom-
plished (for articulated rotors) by mechanical arrangement of the flap hinge
and pitch form equivalent to rotation of the flap hinge by the angle 43, su
Kp = tan 83. Positive Kp (i.e., 83 > 0) is negative feedback, which intro-
duces a positive aerodynamic spring into the flap equation through the
coefficient Mgy.
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The factor vy is the rotor Lock number, defined as y = QacR“/Ib (where
@ 1is the air density, a is thc blade section lift-curve slope, ¢ is the
blade chord, R the rotor radius, and I} is the moment of inertia of the
flap motion). The Lock number represents the ratio of the aerodynamic forces
to the inertia forces on the blade; y typically has values from 6 to 10 for
current helicopters. The left-hand side of equation (1) is the blade aero-
dynamic flap moments due to flapping and pitch control. Neglecting reverse
flow, and assuming the mode shape is n = r, then the aerodynamic moments are

A

= -(% +'% WU sin w)

o
{

2)

4
w
|

=

~~

= -4 COS w(% + %-u sin ¢)

1.1 . 1 . 2
Mg = g+t 3usin v+ K'(“ sin ¢)

/

where u 1is the rotor advance ratio. the ratio of the helicopter forward
speed to the rotor tip speed; for current helicopters, the advance ratio at
maximum forward speed is typically between 0.3 and 0.5. The neglect of
reverse flow is valid to about u = 0.5, for reverse flow adds order u"

terns to the harmonics of the flap moments. Hence, neglecting reverse flow is
consistent with the present small yu perturbation analysis, which will be
carried to order u2.

The equation of motion then, substituting for the flap moments and
dropping the pitch control forcing terms to obtain the homogeneous equatiocn,
becomes

g+ (%-+ % u sin w)é + 'vz + U cOS w(%-+ %-u sin w)
+ Kp[{- + %u sin ¢ + i- (u sin wb)z]]e =0 (3)

The derivation of this equation may be found in the literature, for example

in reference 8, which also considers the reverse flow aerodynamics. The only
parameters are the flap natural frequency v, which is always 1 or slightly
above; the pitch/flap coupling Kp, which is frequently zero for helicopter
main rotors; the Lock number vy, a measure of the relative streng~h of the
aerodynamic forces on the blade; and the forward speed u. For the hover
limit, u = 0, equation (3) reduces to a constant coefficient linear differ-
ential equation. For forward flight, . introduces periodic coefficients into
the differential equation. The stability of a system is defined by its eigen-
values, or roots; there are two for this second-order equation. The scability
of the Iflap motion will be examined for zhe case of small advance ratio, by
means of a perturbation technique to hand:: the influence of the periodic
coefficients due to forward flight.
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Hover

In the hover limit, yu = 0, the equation reduces to
B*%B*(VZ*FKP %)eao £4) b

The eigenvalues A of this ccnetant coefficient differential equation are
obtzined from the characteristic equation

2 2
A +18-).+\) +Kp%=0

which has the solution

)\=-T%ii/\)2+-g-l(p'(-1%)2 ()

These roots are usually complex conjugate pair, that is, the radicand is
positive. For that case, the two roots lie on a circular arc in the A plane,
with center at ReA = -Kp and radius ey sz, so the circle goes through
the imaginary axis at t*iv. The real part of the roots is given by y only,
Rel = -v/16, which then determines the location of the two roots on this arc.
The root locus for varying vy then consists of the portion of this circle to
the left of the imaginary axis (since y 1is positive), plus the real axis
from -» to -Kp. At y = 0 the roots are at X = *iv on the imaginary axis.
For y + « the roots approach )\ = -» and A = -Kp (which noticz is the center
of the circle). The y locus intercepts the real axis at X =-Kp - vv2 +Kp2 '
(the center of the circle plus its radius), when vy/16 = Kp + vv2 + K2, For
y still larger there are two real roots, that is, the radicand of equa-

tion (S) is negative; for smaller Yy the roots are a complex conjugate pair.
For Kp = 0 this intercept occurs at y/16 = v, hence at y approximately

16, which is quite large for current helicopters. Negative pitch/flap
coupling Kp (positive feedback) is required for the intercept to occur at
more usual values of .

With two real roots, the branch of the locus going to X = -Kp will go
into the right half plane - become unstable - if Kp < 0. This root is on the
real axis, so passes through the origin (A = 0) to go into the right half
plane. That is, a static instability, or divergence, occurring due to the net
spring rate being negative. The stability boundary is crossed at )
y/16 = -VZ/Kp, and the flap motion is divergence unstable for larger y. This b
may better be viewed as a limit of Kp:

v2
Kp > - T (6) }
3 i
P
required for stability. At this boundary, the other root is at )\ = v2/Kp ' o
(hence stable, since Kp < 0). P
[t
L
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Hover root locations which will be of particular interest are those where
the frequency is near & multiple of %/rev. The hover root has a frequency of

Y/rev for v/16 = Kp + A2 + Kp2 - (1/4). For Kp = 0 or small, this means
y approximately 14, so the hover root frequency is above %/rev usually. The
hover root has a frequency l/rev for v/16 = Kp+/v5 + Kéa - 1. For Kp =20
or small, this means y must be small. Since v > 1, there is oniy one
crossing of ImA = 1 or %/rev by the vy 1locus (except for the case v = 1,
when the locus starts at Imh = 1 for y = 0, and will have a second crossing
if Kp > 0).

The natural frequency of the flap motion is wp? = v2+ (y/8)Ky. This 1s
mainly given by the structural and centrifugal stiffening, that is, by the
frequency v; it depends on y only as it influences the effectiveness of
pitch/flap coupling. Negative pitch/flap feedback, Kp > 0, adds a positive
aerodynamic spring and so increases the effective flap spring rate. Notive
that wp = 0 gives the criterion for divergence of the flap motion. The
damping ratio is ¢ = (y/16)/wp. Hence, the flap motion is very heavily
damped in hover, with ¢ typically 50 percent critical damping, due to the
high aerodynamic damping.

Expansion in u

Consider a perturbation solution for the stability in forward flight at
small u. Using the method of multiple time scales (as described in Appen
dix B), the behavior of the system is examined for ¢ of the order 1, u™!,
u2, etc,; that is, let . b, ¥y = Wy, Y = 2y, . . .. Then the time

derivative is

..?_z g + U 3 2
Y Yo LI

Expand B as a series in u, each term depending on all the time scales ¥p'
B = Bo(WosVis¥2ss - o) + uBy(Yp,¥yse « &) + .
and also expand the parameter vy as a series in wu:
YRy, tuyy vuly, v L

This expansion of y 1is a way of quantifying when Yy is near certain
critical values; that is, if Yo is some critical value, and Y, = (y -Yo)/u
is order 1, then y 1is ovder u near Yo- The quantity vy is still the
parameter given, hence this decomposition into vyg, vy, Y2, . . . changes
with y.

Now 8, d/dy, and y are all axpanded as series in u. These expansions
are substituted into equation (3), and all terms of the same order in u




collected, assuming that all the coefficients In the expansion are of the same
order. A fundamental assumption of the method of muitiple time scales is that
the B, must all be the same order for all the time scales y,. All the
terms of like ovder in u are collected and separately set to zero, to obtain
the equation that starts the analysis at each order.

Order 1 Results

The order 1 terrs of cjuation (3) give

+ = + (v2 + k X0 B, = 0 7
2 T 8 3y, \ PE/)F0~ )

The solution of this equation is
Ag¥
» By = Re[ﬁm(%. S L °] (8)

where the root 1y 1is

2
Y . Y Y
Ao = - T% + i fu e 1? Kp - T%) (9)

' The convention will be followed that Ay is the root with positive frequency;
the other root is the conjugate X,;. Then to order 1 the equation of motion,
1 and so the roots, are just the hover limit. Since 8, is a function of all
) the time scales, equation (7) is a partial differential equation, which
. determines By as a function of by only. Thus, B8g; still depends on Wy
v,, etc.

Ordur u Results

" The order u equation is
SR
=2 aiz,aé’w, * YTO';E% * (183' * Y6 v osin %) awg
e 4 . (ZGO' €os Y, ¢ ZSL Kp + -%Q Kp sin y, 80 (10)
This is a differential equation for 8,(¥,), forced by the order | solution
Bo(¥g); substituting for 8,, it becomes

10
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Yo\ 98 Y A
0 01 1 ]

o [1 - i(rg zxn)] Bgye M0t ¥o

+
<

Y . Ag-i
+ -1-% [1 + i(hg + ZKP)]Bole( 0-1)¥g

+ conjugate (11)

The right-hand side has a term of the form A;e’®%0 due to the 8y solution,

where A; 1is independent of y;. But the left-hand side is the same as the
order 1 equation (eq. (7)), so it has the same homogeneous solution e"0%0,
Then the solution for B; is of the form

Al A
8, = Re s“em’o - Ve ovo , . . (12)

2)\0+"Y—8Q

The forcing of equation (1C) by its own homogeneous solution produces the
second term in 8;, which is order Y; compared to the solution for Bj. Su
as g increases, B; will become arbitrarily large compared to B¢, which
violates the assumption that all the terms B, in the expansion of B are
the same order. This situation can only be avoided if the secular term A;,
the coefficient of the homogeneous solution forcing equation (10), is
identically zero,

Assume for now that XAp * i # Ag; then the periodic coefficients do not
contribute to the secular term of equation (10). Setting the secular term to
zero gives a differential equation for Bp1(¥y):

y
py) 9B Y
(2x0 ¥ -é—) W_gl' + - (Ao * Kp)Bo1 = O (13)
or
38
—9L _ x84y = O 14
TR 1801 (14)
where
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+ (Ao + Kp)
MOT T T TR
. . . . A .
The solution of this equation is B8 = Bg2(¥2,. . .)e !}, so the solution
for R so far is
r Aa¥n+A

8 = Refgoa(up,. . e 0¥0™M¥I] L oy (15)

The eigenvalue to order 1y is then
Loai/v2 el Y)?
A= Ag + ury =~ ige*ri/v+g Kp - (TE) (16)

That is, Ay 1is just an order u perturbation of the hover root, due to the
order u expansicn of y. To order u then, the eigenvalue remains just the
hover value, with no influence of forward flight at all.

The assumption that Xy * i # Ao means that Im\g # %/rev. This
requirement then is that the hover root A should not have a frequency near
%/rev; '"mear" means being able to write the hover root as Xy plus an incre-
ment, such that when A; has a frequency of %/rev, A - Ay is order u
small. As u increases then, the distance from !/rev which considered ''near"
increases. The analysis will return to the case Imig = /rev later,

With the secular term removed, equation (10) becomes

8281 , Yo 3% ( 2 YO)

Wz T BT\ T/
_ . (Ao+1)¥g
—-Tz—[l-l(Xo"ZKp)]Bme

Y . Ag-1
- T% [1 + i(xg + ZKP)]Bole( 0-1)¥o

+ conjugate (17)

The solution of this equation is

Y > .
8 = RelBIIN’l)e)\owo . '1'% 601[A+e()\0+1)¢0 + A..e(}\O'l)‘vO]’ (18)
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where

A, =

13 i(x + 2Kp)
+2Imho + 1

The second term is the particular solution, which with the secular term
dropped is now the same order as B8(. This completes the solution to order u;
the solution so far is Bg(¥o,¥1) and 87 (¥g).

Order u? Results

The order w? equation is

3284 vy 2By Yy 0 o8
o NI * ("—.+ g S wo) g
Yo Yy Yo
+ (—6— cos Yg + KP ' + Kp 3 sin lbo)sl
38 28 Y, 38 Y, Y B, (Yo Y 38
0 0 0 %o 1 0 .. 0 2 Y1 . 0
b — 2 et e e — — —-—+(-—-+——-—51n )—-——-
e * 25, B Ny (8 + g sin "") 735, '\8 6 Yo) 3u,

\D Yo o Yo Y, .Y o
+ [7;-cos Yo + g Sn 299 *+ Kp 3% M al sin Yo - g C€OS 2yp} | Bo

(19)

The solutions to order u for Bg and By are substituted into this equation,
and the coefficient of the homogeneous solution eroVo - that is, the secu-
lar term - are collected. Assume for now that Xg + 2i # Xo, that is,

Imhg # 1/rev; it has already been assumed that the hover frequency is not near
. /rev. Then the secular term is

Y "' 2
- ; -

3811 I LLLY I DV kp g * (T%) 100 + 2Kp) (A, - A) Boo%et 1V
T\ ME1 2 2 2iImAg

(20)

where A, 1s the order u2 term in the expansion of the hover root:

2
T A REVAGRS 1R ¢ I (21)
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Regarding this as a differential equation for Rj;(¥;), it is fo.ced by its
own homogeneous soluticn e*1¥1, Se.ting the secular term of equation (20)
(i.e., the entire right-hand side) 1o zero gives an equation for Rg2(¥2):

Y Yo \2.
8 kp g+ (13) 100 + 2Kp) (A - AL)
02 , |5, 12 Bop = 0 (22)
30, 2iTmig
Thus, the eigenvalue to order u? is

2
Kp %g-* (}%) i(hg + 2Kp) (A. - AL)

A= g+ uhy ¢ uln, -
0 R 211mA,
Yo 2
u2*1 Y YO 2 2(\)2 --S—Kp+4Kp)
= *hover * STmro KP‘QQ'*(“Q' (23)
2Imig 1 1 - (21111)\0)2
or to order u? this is
2 Y 2
\V] ‘—KP""“KP
= - L A2 2y L g . ;L)Z 2 8 8
Voo i p2eeu?) LRp- (G boud § T (24)
P~ \1¢ 4

Then to order u? - and for vy and v such that the hover frequency is away
from }/rev and 1/rev - the influence of forward flight on the eigenvalues is
simply a small (order u2) change in the frequency. The first effect in the
frequency just corrects the (y/8)Kp spring term to account for the increase
of the mean of KpMg with u. The second effect of u 1is entirely due to
tne periodic coefficients. This order u? change in the frequency is in fact
quite small for u out to 0.5 or so, as the examples below will show. There
is no influence of forward flight at all on the damping of the roct.

This expression for the eigenvalue was derived assuming that the hover
root. are a complex conjugate pair; it may be shown, however, that the same
expression is valid for y large enough that the two roots are real, that is,
when the radicand is negative. A point of particular interest is where one
branch of the locus on the real axis crosses into the right half plane, that
is, the divergence stability boundary. The criterion for this boundary is
that A = 0, which from equation (24) gives

2 Y 2
2 \Y ‘—Kp+4Kp
2 - 8 8
v +(1+u2)%—Kp— (-i%)uz-gz TN 1
vegke - (%) -1
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or since -(y/8)Kp is an order u? distance from v2, the criterion on Kp
for stability is

2y Y 2
(1 + %) gKp > =-vHl + 5 (25)

\ (TYG") i

The u effect on the right-hand side (the periodic coefficients) dominates
that on the left-hand side (the average of KpMy). So the critical value of
negative Kp, beyond which the locus lies in the right half plane, is actually
increased by u; the hover criterion on K; is then conservative in forward
flight. That is the opposite conclusion as would have been reached consider-
ing just the averaged coefficients. In any case, however, the influence of
forward flight is only order u? small.

(_wr_)‘+ v2
2 16 \16/ " 72
1
7

Equation (24) also gives the effects of u on the boundary between where
there are two real roots, and where the roots are corjugate pairs. This
boundary is given by ImA = 0, which to order u? is

16 2 2 2).

v2(-Kp + W2 + Kp )‘- K

(kp + A7 K)o w2 2 ( e P (26)
VZ + KPZ

X =
16

For Kp = 0 this reduces to simply

'116' = v(l + 2 1361\»2) (27)

Near %/rev Frequency

Now return to_the case when the hover root frequency is near Y/rev, If
Im\g = 1/2, then Xg + i = Ag and the periodic coefficients contribute to the
order u secular term. The criterion Imig = 1/2 means

Yo 1
—_— 2 2 _ =
16 Kp + /\) + Kp 7

fince v = vy *tuy, * . . ., that means y must be such that y - Yo is
order u small. The order 1 root is then Ay = -(yg/16) + (i/2), and the
order u secular term is now

(zxo + '8—)'5@%]" + 3 (Ao * Kp)Bor *+ 7 [1 - i(xo + 2KP)] Bo1 =0

15
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or

38 ~oE oy \
01 0 0 0 Y7 . .
a‘qﬁ"*lﬁm*(m*?‘p'z‘:l)ﬁm-o (28)
where here, since Imiy = 1/2, the order u expansion of the hover root is ‘1
Y -Yl Y
SRR TTE'KP)
[ d

The Bp; term is the periodic coefficient contribution to the secular term.
The solution of an equation of this form is given in Appendix C. The solution
for Bg; depends on the quantity

(Imr)? - [(%‘ - Iég KP>2 * (;%)2]
SETUR) (RSO B

Now if D2 > 0, the solution for B8j; has terms with time behavior like

D2

e-(RelliiD)wl . e-u(Y1/16)wtiqu

and then B3 has terms like

ALy .
0y10 0% - o (/160w [(1/2) 0]

The damping is unchanged, and there is an order u change in the frequency,
due to the periodic coefficients when the hover frequency is near }/rev. If
DZ < 0, then Bj; has terms like

- (Rer,tD - 16)+uD
- Ren20)yy _ [-utry /16000y
and then B8, has terms like ¢

Bmexowo ) e[- (y/16).+.uD]w+(i/2)'P

There is an order u change in the damping, both more and less stable, while
the frequency remains fixed at )/rev,

16
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The influence of u on the roots near )/rev frequency then is first an
order u change in the frequency towards }/rev, with the damping at the hover
value. When the roots reach 's/rev, the frequency remains fixed while there is
an order u change in the damping. One root is stabilized, the locus moving
to the left on the ) plane, but the other is destabilized, it moves to the
right. This type of behavior of the roots is characteristic of periodic sys-
tems (as discussed in Appendix A). Indeed it appears here due to the contri-
butions of the periodic coefficients to the order u secular equation when
the hover frequency is near %/rev. There is in this case a eritiecal region,
inside of which a change in the flap damping occurs. For many problems with
periodic coefficients, the system is unstable inside such a region. 1In this
case, however, the hover damping, Rel = -y/16, is quite large; and the change
in the damping is only *uD, hence, order u small compared to the hover
damping. So the critical region is a region of stability degradation rather
than instability (for small wu, i.e.).

The boundary of the critical region is given by D2 = 0, or

Yo _ Yi_, Yo / 2 _ Yo 2

Since y = yg + uy;, write y = yp + Ay where vy is the value such that the
hover root is at Y%/rev. Then if the hover frequency with y 1is near %/rev,
0y = y - yop must be order u small. The boundary of the critical region

is then

<

Yo Ay o, Yo 2 _ Yo 2
(Té--l(p)-l-g-tuﬂ v —-g-l(p+4l(p (31)

Considering the u root locus, then the critical region boundary is the value
of u for which the locus reaches !/rev frequency, and is just about to
encounter the stability change at !/rev frequency. From the hehavior of the

u root locus, this boundary value will be denoted u.,rper» Where then

AY.(.Y_Q._ )
*Te\16 " ¥p

Y 2 _ Yo 2
2%/\) "‘é"Kp"’4KP

(32)

Yeorner

For Kp = 0 this reduces to Meorner = +(Av/16)(3/2v). 1In general, this

equation gives the boundary of the critical region on the y - u plane. The
eigenvalues are

17
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Ag + uRex; - iuD

2

. 2
e
"1tz W ( ) 16 l(P)

which may be written
Y i 8y (Yo u 5
A= - 16 + 3 - i 18 (16 KP) - (.._..-...—) (34)

For u = 0, this reduces to

]

2
Y Y
- (T%) (yz -2 Kp + 4xp2) (33)

.. XL é_--.A_Y.(b__ )
A 167 16 A\1s " ¥p) >

which 1s just an order u (i.e., order Ay) expansion of the hover root from
s/rev frequency at vyg.

Near 1/rev Frequency

Consider now the case with the hover root frequency near 1/rev. With
Imhg = 1, then Xp + 2i = Ay, so the periodic coefficients contribute to the
order u‘ secular term. The criterion Imly = 1 means
Yo/16 = Kp + e e Kpi - 1, and the order 1 root is then Xg=-(yy/16) + i.
For this case Imlg # 1/2, so the order u results are applicable; then the
root to order u is known (i.e., A = Ao + uA}), and now the order u? influ-
ence is sought. The secular term of equation (19) becomes, for Imxg = 1:

2
3811 3802 F (Yo) i Y
(2 {02, | L 2 20 2
(aw1 A‘B“) {awz e\ II‘(? T Kp + 4Kp )

—

Yo AU
i 11

{r( - i+ )

y -
-5 Q- iKP)}Ebzexlwl (35)
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The Bgs term is the contribution of the periodic coefficients to the

secular term when Imig = 1. The sccular term of thie equation is the coeffi-
cient of eAlwl, hence, it is exactly -.s before (eq. (24)) - giving the same
result for the eigenvalues to order u2 - unless Aj = A\;. In that case,
which requires that \; be real, the entire right-hand side is the secular
term of equation (35), including the By, term. Since

RPN AN
ME-griie 16" Y)

requiring 1ImiA; = 0 means that y; = 0; and so X, = 0 in fact. For the
periodic coeftlcxents to contribute to the order u? secular term requires
then that vy = yg + u Yz + . . ., that is, y must be such that y - vy, is
order u? small; this quantifies what "near" 1/rev frequency means. For a
given u then the hover frequency must be closer to the critical value than
was required for the 3/rev region. The effect of forward flight near 1/rev
frequency is smaller than near Y%/rev, only order u? compared to order
for the latter.

With vy, = 0, the secular term of equation (35) becomes

2
. Y2 Yo
W [ 7% 0o+ %) + ()

2
Y+'xy°'1Y°(Y2x 2K, +1)|Boz=0 (36
M AR A A AN T o (18 0 1) Foe=0 )

The solution for B3, depends on the quantity D (see Appendix C) given by
2

i Y
1—2-( —QQ-KP+4KP)—KP—-1]802

YO
. 2
= Kp + 4Kp

Y Y Yo VO - K Y
2 Jo 12 0 _ 0
p® = (16"‘!’16’ T) 12 Kp 18

¥ 2 Y Y 2 272
{6 )] oo Gem) ) e

The behavior of the roots is similar to that near L/rev, except trat all
changes due to forward flight are here order u2. There is a critical region,
inside which there is an order u? change in the damping of the flap motion.
For small u, the damping is the same as the hover root while there is an
order u? change in the frequency, towards 1/rev. At the boundary of the
critical region the root reaches l/rev frequency; and for still larger u,
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inside the critical region, the frequency is fixed at 1/rev while there is an
order . change in the damping, one root becoming more stable and the other

less.

The boundary of the critical region is given by DZ = 0. S
+ . . ., Write y = y, + 0y where ¥ is the value such that

Y = vy + iy,
the hover root is at 1/rev.

Then, 1f the hover frequency with vy

ince

is near

1/rev, 3v = y - y, must be order u? small. The critical region boundary
may then be written

where
G
o)
Then the u

Ycorner = - !

20

Yo A - 2
(- ) - v =

Y
2 0
Yo 2 ve - 8 Kp4‘4Kp2 Yo
= \% 12 * ¥ 16

2
16 , . 16 (Yg Yo
-3 - D ‘ﬁ(ra T

.}% ﬁ. %Q(I—g . zxp)]2 R [Kp - ZQQ(-;% - 2Kp)2]

2

root locus reaches the critical region boundary at
or up, where

Z,G%"‘P)%

this becomes

R N N R ]

- 1)2

(38)

(39)

(40)

(41)

(42)
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The eigenvalues are now

>
"

Ao + ulRer, - iu?D

(43)
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For u = 0, this reduces to simply an order Ay (order u?) expansion of the
hover root from 1/rev at Yg-

Summary, and Discussion of the Results

This section summarizes the results of the perturbation solution for the
influence of forward flight on the helicopter rotor blade flapping stability.
lhe expressions for the eigenvalues are collected from the analysis above.
The behavior of the roots is discussed, in terms of the u root loci and the
critical regions on the y - u plane. These results are for the shaft-fixed
stability of an individual rotor blade.

0, has the eigenvaluves

2
; 2 .Y (XL
1//7v ¢ T kp (16) (44)

These roots are usually a complex conjugate pair, located at Rel = -y/16 on

the circular arc with radius v¥v? + Kp? and center at A = -Kp. Forward
flight, v > 0, introduces periodic aerodynamic forces into the dynamics, which
radically influences the behavior of the eigenvalues and the analysis tech-
nique required to obtain them. A perturbation method based on small u has
been used to obtain explicit expressions for the roots when u > 0, including
the effects of the periodic coefficients. It is an order u? analysis
(consistent with the neglect of the reverse flow region effects), which is

valid to approximately u = 0.5,

Hover.- The hover limit, u

A=

+

- L
16

Forward flight, away from eritical regions.- When the hover root
frequency 1s not too close to a multiple of %/rev, the roots to order u? 1ire

2 v2 - L kp + 4Kp?

2, 2y g - (X 2 8 8

S T ARSI R & (ﬁ)““yznx (Y-
oo ()

(45)
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There is only an order u? change in the frequency, which is quite small even

up to u = 0.5. This expression applies in particular when there are two real

roots, that 1s, when <y is large enough so the radicand is negative, so it

gives the criterion for divergence instability, including the influence of

forward flight, The divergence boundary is given by where one branch of the

locus on the real axis goes through the origin into the right half plane. The .
boundary criterion is then A = 0, for which equation (45) gives the criterion b
for divergence stability as

(1 +u2) FKp > -v21 !gi (46) -

&) ¥
() - &

This is a limit on the pitch/flap feedback allowed; the divergence instability
occurs when Kp is sufficiently large negative (positive feedback). A con-
stant coefficient approximation to the equation of motion, using the average
of the coefficients, includes only the effect of the mean of Mg on the left-
hand side of equation (46); that is, a conservative approximation for this
case.

Forward flight, near M4/rev frequency.- It is characteristic of a system -

with periodic coefficients that for certain values of the parameters there

occurs a degradation of the stability. Typically this occurs where the basic

eigenvalue - here the hover root - has a frequency corresponding to a multiple

of one half the fundamental frequency of the equation coefficients. Specifi-

cally, consider when the frequency of the hover root of the flap motion is

near %/rev. There occurs then an order u influence of forward flight. When

the frequency 1s near Y/rev, equation (45) is no longer valid ‘or A, and the

following result must be used instead. Let vy, be the value of y for which

the hover root would (with the given v and Kp) have a frequency exactly ly/rev;

that is, v /16 = Ky + /2 + Kp2 - (1/4). Write Ay = v - - Then, if
Av/16 is order u small, the eigenvalue is given by

. 2
Y =

Ycorner

where

Y
(12 - %)
Yecomer T Y (48)
7% ’\)2 -YTOKP* 4Kp2

The subscript 'corner" refers to the behavior of the u root locus on the A
plane, as discussed below; it is the boundary of the critical region. For

Kp = 0 this result reduces to v,/16 = AZ-T7%, and Beorner * (8Y/16)(3/2v) bl e

for the boundary. P
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This solution exhibits the .~t..uing behavior. If u < u_ +qer, there is
- grder s change in the freo:. - . toward Y%/rev, while the real part of the
roct remains fixed at the hov- . ;e of -y/16. At u = ucorner the roots
reach ‘m: = Y/rev., Fnr © . .ner the frea-ency remains fixed at ’/rev
while the.e :s an order @ 'uuyge in the damping; Rel is increased for one

root and Jdec-eased for the ('..<v, This behavior of the locus near

Imi = Y%/rev is characte:ist.c of periodic systems (Appendix A). While there
is a stability degradation i{f u 1is large enough {greater than \ucorners
which decreases with 4y, :.c., as the hover root approaches 's/rev), the
reduction 1n damping is order u small. The hover damping, Reix = -y/16, is
quite large for usual values of 1y, and so stability is maintained for small
u, even with the influence of the periodic coefficients.

Forward flight, near 1/rev frequency.- Similar behavior is exhibited when
the hover root frequency is near l/rev. Let Ay = y - Yoo where now 7y, 1is
the value of y for which the hover root (with the given v and Kp) is
exactly at l/rev, that is, Yo/16 = Kp + N2+ KPz -~ 1. Then if A4y/16 is
order small the roots are given by

2 2
x=-%g+i-i’i—g(l{%-xp)/(1-§—li)(-:?> (49)

where the corner u are

AY.Y_O_K)
16 \16 P
u12,U22 = T (50)

Cipressions for C; and <, arc given above (eqs. (39) and (40)), along with
the results for the limit Kp = 0. The behavior of the u 1loci is like that
near /rev, except that "iere all changes are only order u2. For small u
there 1s an order u? change in the frequency, toward l/rev, while there is
no ciange 1n the real part from the hover value. For u = uj or up (only one
will be real) the roots reach Imx = 1l/rev, the critical region boundary. For
still larger ., the frequency is fixed at 1/rev while there is an increase of
the real part of one root and a decrease of the other. The stability degrada-
tion 1s only order u? small, so again the flap motion will remain stable for
small . and reasonable .

Comparisons with numerical solutions for the flap roots (from calcula-
tions by the author, and from the literature, e.g., ref. 12) indicate that the
perturbation solution to order u? is accurate to about u = 0.5. This
sulution then covers the range of interest for most helicopters.

Root loet for forward flight.- Typical u root loci are shown in
figure 1, tor several cases of v and y. The cases considered are: (a) v = 1
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and y = 10; (b) v=1.1and vy = 6; and (¢) v=1 and vy = 6. The pitch/flap
feedback Kp = 0 for all three cases. Then the hover roots, u 0, are
located on a circle with radius v and center at the oriyin. Case (a) is a
typical articulated blade; with the large y and v = 1, the hover frequency is
well below 1/rev. Hence, with u > 0 the locus encounters the Y%/rev critical
region. Case (b) is a typical cantilever blade (i.e., a hingeless rotior);
with v > 1 and a lower vy, the hover frequency is above 1/res. Hence, the
locus encounters the 1l/rev critical region. Case (¢) is an example ~l the
behavior when the hover frequency is away from any multiple of 3/rev. So the
only influence of u is a very small - order u? - change in the frequency.
The loci shown in figure 1 thus cover all the cases of awa, from the critical
regions, near %/rev, and near 1l/rev. They illustrate the form and magnitude
of the influence of forward flight. Specifically, the behavior in the
critical regions at )/rev and 1l/rev freguencies is shcsn; and the large -
order u - effect c¢f the !}/rev rezion, and the quite small effect away from all
critical regions may be seen.

Y - v plane.- The eigenvalues depend pri.arily on y and u, so the above
results may be presented as contours of constant Red and the constant Im)
on the y - u »lane. This is the presentation found in much of the litera-
ture. Such plots are shown in figures 2 to 5 for K, = G and v = 1, 1.05,
1.1, and 1.15, respectively; and for v = 1 and Kp = 0.1 in figure 6. They
are based on the perturbation solution given here. The expressions for the
critical region boundaries in terms of the corner u for th: u root loci
may be rearranged, to give the boundary in terms of y for a given value of
u. Writing vy = yy + Ay, the two real root region boundary is

-ligfl vz(-Kp + 2 s KP2)+ KP

AY 2 ~'0 I3
= uc T = 51)
16 16 [7 . K";z
where v,/16 = K_ + /2 « Kp2. The Y/rev cr.tical region boundary is
0 P P
. Kf, + 4K
sy L, 8 ; .

-5

where yo/lb = Kp + e e sz - 1/4. Ania the }/rev curitical region boundary
is

C,stC

A 1 2

T% = p? F_— (53)
16~ Xp

where v, /16 = Ko + /v2 + KpZ - 1, and the constants C) aua Cz are given

above (eqs. (39) and (40)). This expression shows that C; gives the offset

<4

Lo
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of the 1/rev critical region boundary from vy _, and C, gives the width of
the region; the %/rev region has no offset to order u, so is symmetrical in
Ay about vg- For Kp = 0 these boundaries reduce to

v
b . 2.1§6. V3 with o= v (54)
Ay 2 Yo_. /o2 .1

IR with 7%= /21 (55)
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with 2= AZ 1 (56)

16

respectively. The boundaries in figures 2 to 6 were constructed using these
expressiors Only the critical region and real root boundaries are shown
here, but expressions for constant Rel and ImA may also be obtained from the
perturbation solutions. The presentations of the y - u plane results given
in the literature usually include the ReA contours at least (cince only
numerical results are usually available, the y - u plane is the most
efficient way to indicate the stability trends with vy and u variations).

No instabilities are encountered on the y - u plane, for the range of
parameters shown. A divergence (static) instability is encountered at hign
y if Kp < 0, and an instability in the critical region (usually the 1/rev
region first) is encountered for much higher u (around 2). The critical
regions, combinations of y and u where the frequency is fixed at !} or 1/rev,
are the principle effect of the periodic coefficients. Notice they encompass
more and more of the y range as u increases, that is, as the periodic
coefficients increase. The two real root region (Imx = 0, i.e., two roots on
the ReAr axis) is due to y being large encugh so the flap motion has super-
critical damping; while it is influenced by the periodic coefficients, it is
not the same type of phenomenon as the critical regions (the roots for this
case are given by the same expression as for two complex roots away from the
critical regions).

A horizontal line on the y - u plane is a line of constant vy, hence,
the variation of ReA and ImA as such a line is traversed gives the root
locus for varying u. For example, consider the p 1locus for case (a) above,
v=1and y = 10; the y = 10 line is indicated on figure 2. As u increases
from zero, the line remains parallel to Rel = constant lines, so ReA
remains fixed at the hover value. The ImA = !4/rev critical region comes
closer to the horizontai line, indicating that the frequency of the root
approaches %/rev. At the corner u, the locus crosses into the !/rev region.
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For higher u the locus is in the critical region, so the frequency remains
fixed at /rev while for each point in the region there will be two values of
Rel, one more and one less stable than the hover root. The constant vy lines
for cases (b) and (c) are also shown in figures 2 and 4; the behavior of the

y - u plane along these lines ma; be compared t{o the u loci shown in

figure 1.

Figure 7 shows the y - u plcne for v =1 and Kp = 0, from a
perturbation solution equivalent to the present cne but including the order
w2 correction to the %/rev critical region boundary. That solution, from
reference 6, gives the %/rev boundary as

>4

-l=:u%+u2—li (55a)

1 9/%

to order u?. Figure 7 may be compared to figure 2, which is based on the
present solution, hence, only to order u in the Y%/rev region. While the
order u? influence is not negligible for u = 0.5 or so, the major effects
of forward flight are contained in the order u solution. The results of
reference 6 are discussed further below.

b

High w behavior.- For u larger than 0.5 or so, a numerical method
must be used to calculate the eigenvalues of the flap motion. It is also
necessary then to include the reverse flow effect in the aerodynamic flap
noments. At very high u (above 3 to 4, say) a perturbation solution based on
an expansion in u™! 1is possible (ref. 14). Such a solution is of less use
than the small u solution, at least for current helicopters; it does, how-
ever, give some insight into the high u behavior (refs. 14 and 15). For u
around 1, only numerical solutions are possible, unless some other parameter
1s used for the perturbation variable (such as vy, as in ref. 14).

At u = 2.2 or so - the exact value depends on v, vy, and Kp, but there
is not much variation for the range of parameters of current helicopters - a
flapping instability is encountered. It occurs in the 1/rev critical region,
the root being destabilized by the periodic coefficient influence crossing the
imaginary axis into the right half plane. The y - u plane for v = 1 and
Kp = 0, with u out to 2.5, is shown in figure 8; this plot is a composite of
the results available in the literature. Figures 2 and 7 give the y - u
plane for the same v and Kp, but for u to 0.5 only. The behavior of the
critical region boundaries at high yu, and the high u instability in the
1/rev region are shown., The high u behavior of the u root loci in
figure 1 may also be inferred from figure 8.

For case (¢), v = 1.1 and y = 6, the u locus enters the 1/rev critical
region at small wu. The locus remains in that region, one root moving to tiue
left and the other to the right, until the latter branch becomes unsta“le
(crosses the imaginary axis into the right half plane) at high u. Fo.
case b), v =1 and vy = 6, the locus shows a decrease in frequency up to
uw = 0.5. But at somewhat higher 1 the loci turn around and the frequency
begins to increase, for at about u = 1.1 the roots encounter the 1/rev

|
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critical region - see the Yy = 6 line in figure 8. 1In the 1l/rev critical
region for higher v, one branch of the locus is destabilized, until an
instability is encountered at about u = 2,35.

For case (a), v=1and y = 10, the u 1loci also encounter the high u
instability in the 1l/rev critical region, so first the roots must get from the
Y/rev region to the 1/rev region (see the y = 10 line in figure 8). As
increases above 0.5, the loci in the %/rev region eventually turn around, the
real parts of the two branches then approaching each other instead of diverg-
ing. At . about 1.55 the roots get back to the hover value of damping, and
then break away from the Y%/rev region. The frequency of the roots increases
toward 1/rev then, while the damping is fixed; that is, the roots are complex
conjugates again. When the roots reach ./rev they enter the l/rov critical
region. The transition from %/rev to 1l/rev frequenty occurs very quickly,
during a very small u increase, because the corridor between the two criti-
cal regions is very narrow at this point (fig. 8), In the 1/rev critical
region for higher u, one branch of the locus is destabilized then, and
eventually a flepping instabi’:ity is encountered at about u = 2.25.

N-BLADED ROTOR EQUATIONS OF MOTION

Consider a rotor with N independent blades, with no coupling by -haft
motion and only the excitation due to the blade pitch control. The flap
motion of the rotor is described by a set of N equaticns, each of the form
of equation (3):

gm) (% . % 4 sin ¢m)é(m)'+{V2 +u ccs ¢m(%*'%‘“ sin wm)
+ Kp [% + % uosin g + {- (u sin wm)z]}ﬁ(m)

[

where s(m) is the flap degree of freedom for the mth blade, m=1, . . ,N
The azimuth location of the mth blade is Yy = ¢ + mAy, AY = 2n/N.

+ L sin vy + I (4 sin wm)2]e(“‘) (57)

oof=

For a teetering or gimballed rotor, the blades do not act independently,
so the rotor motion is not described by these equations. They may be used,
however, to derive the appropriate equations of motion.
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TEETERING ROTOR

Equation of Motion

Consider a teetering rotor: a two-bladed rotor with a single flap hinge
at the center of rotation. The two blades are not independent then, rather
the rotor flaps as a whole, one blade up and one down. The equation of motion
must be obtained from equilibrium of moments on the entire rotor rather than
on individual blades. The coning motion of the rotor - both blades up or both
down at the same time - is reacted by the structural restraint at the blade
root. That is, it is a cantilever mode type of motion, for a very stiff
blade, so with a very high frequency. In the teetering motion, however, the
blade acts like a hinged rotor, usually,in fact,with no hub spring at all so
the flap natural frequency v = 1/rev (although the general case of v > 1
will be considered). Consequently, the ccning motion of the rotor will be
neglected as a higher frequency motion, and only the teetering degree of
freedom considered.

Let B8 be the degree of freedom for the rotor teetering motion, so
8(2) = B and 8(1) = -B. Equilibrium of flap moments on the entire rotor is

given by half the difference between the 8(2) and 8(1) equations of motion.
Then, the equation of motion for the teetering rotor flap motion is

§+§-é+ [v2+-§—u2 sin z¢+xp(-g-+g-u2--§-u2 cos zw)]e=o (58)

Notice that all 1/rev harmonics drop from the coefficients of B8, because
with the teetering motion the rotor has a period of only = with respect to
the aerodynamic environment. As a consequence, all the order u terms have
dropped, leaving only the order u? influence of forward flight on the
coefficients of the flap equation.

Hover

For the hover limit u = 0, the roots are as before (for independent
blades):

x=.--1%:i/v2+%xp-(-ll%)2 (59)
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Expansion in u?2

Only order u? terms appear in the flap equation, so an expansion in u

is used now:

3 ) 2 9
-— = + rp—
I TP T

2

Y =yt WY, + .

Order 1 Results

This is the hover limit again:

a2g Y, 38 Y
°+—2-—£+(\,2+x —9->s =0 (60)
awoz 8 B\JJO P 8 0
with solution
A
80 = Re[Bo2(vzs. - )e*0%0] (61)
where the order 1 eigenvalue is
Y Y Y, \2
A\g = - T% + i///;z + 7% Kp - <T%) (62)

Order u? Results

The order u? equation is
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Yo . Yo Yo Yo
+(—8—51n2w0+KpT+Kp-—8—-Kp—8-c052w0Bo ;
-

Yo\ %892 [72 Yo l AoV
= —_) — — — 0
‘(ZXO + 3 ) Y + ) (Xo + KP) + 8 KP]BOZ €

Y. . Ag+2i
+ 1—% (-i - Kp)Boze( 0*+21)¥,
Y 93
.2 (i - Kp)Boze(/\o 2i)vo
16 2
+ conjugate (63)
Assuming that Xg + 2i # A, that is, Im\g # 1/rev, then the secular temrm is
Yo\ 98 Y Y
(2x0 + -é’-) awgz + ['82‘ (Ao * Kp) + -g‘l Kp]Boz =0
or
38,
— - A = 0 4
T 2802 (64)
where
Yo (Ag + Kp) + 2 g
N S 2 :
2 ZiIm)\o
The solution is g
A
Boz = BouCu,. . -)e*2¥2 (65) N Eied
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So

B = Re(Bo,e*0¥0* 2¥2) | o(,2) (66)
Then, for Imiy # 1, the eigenvalue to order u? is

A= Ao + u2X2
2
N S &Y 2y Y k. - (XL
16*1/’ + 1) gk - () (67)

The only influence of forward flight on the eigenvalues of the teetering rotor
is then the l.crease in the mean of KpMy (to order u?, and for Imig # 1).
This result is substantially simpler than for the independent blade, with much
less influence of the periodic coefficients. The difference is the result of
the internal cancelling of the l/rev, order u flap moments for the teetering
rotor. In fact, if Kp = 0 there is no order 2  influence on the roots at
all, they remain at the hover values; if Kp > 0 there is an order u2
increase in the frequency, due to the increased effectiveness of Kp acting
through Mg.

The divergence criterion (A = 0), becomes now, for stability
(1 + u2) £ Kp > -v2 (68)

This is a stricter requirement on Kp than for the independent blade (i.e.,
the boundary is reached at a negative Kp of smaller magnitude), but the
difference 1s only order u2. The two real root boundary (ImA = 0) is

K
X . /o2 2 2 P
1z (Kp + /v 4 Kp )(1 +u T sz) (69)

or for Kp = 0, y/16 = v,

Near 1/rev Frequency

Return now to the case Ap + 2i = ip, that is, Imig = 1, the hover

frequency near 1/rev. This means vyy/16 = Kp + /v + Kp¢ - 1, and the order 1
root 1s Ag = -(70/16) + i. Now the periodic coefficients contribute to the
secular term, to give
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3Bgs Yo .. —
Wy A2Boz *+ 1 g7 (1 + Kp)Bo2 = 0 (70)

where since Im\g =1,

Y Y Y Y
. i (Y ) Yo ]
A2 16”[16(16*"*’*16"1"

The solution depends on

2 2
Y Y Y Y
2 |12 (10 o] _(.!0 2
D [_16 ( ST KP) + Kp 1‘6] ('37 (1 + Kp?) (71)

The critical region boundary is given by D2 = 0, or writing y = v, + by,
with Ay order p? small:

% Y0 Kp) = uz(xp 11('06‘ * ;-% 1+ Kp2) (72)

1€ -
In terms of the u locus, this gives the corner u:

. (8-

u12,112 = Y Y _ (73)
Jo ., to / 2
Kp 16 : 33 1+ Kp
This expression is similar to that for the 1/rev region boundary of the
independent blade (eq. (41)), but with
Yo
C, = Kp 16
(74)

Y
c2=3%/1+xp2

that is, with considerably less influence of the periodic coefficients. The
eigenvalue is
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A = Ao + ulRerp - iu2D

oot BB
= - +1i1-1i-—{=-K 1 - —~}[1 - ~—= (75)
16 16 \16 ~ "P uy 2 uy2

which is 1dentical to the independent blade result (eq. (43)), except that the
corner u have different values. For Kp = 0, the criterion Imip =1

reduces to v,/16 = vvZ - 1, the 1/rev boundary is u12,u? = *#2(Ay/16), and
the eigenvalue reduces to

R R S A (%)2-“% (76)

For v =1 (and Kp = 0) this is the same boundarv as for the independent
blade. For v > 1, the critical region has a smaller width, and is not offset
(C; = 0 still, since Kp = 0).

Summary
The influence of forward flight on the teetering rotor differs from that
on the 1ndividual blade principally in that: there is no X/rev critical

region at all; and the periodic coefficient influence is much simpler. Away
from the 1/rev region, the roots are given by

x=*-116¢i/\,2+(1+u2)%.xp-({3-)2 (77)

including the forward flight influence to order u?. The corresponding
criterion for divergence stability is

(1 +u?) % Kp > -v2 (78)

There is no %/rev critical region, so this expression holds also when the
hover frequency is near Y/rev. A critical region is encountered only if the
hover frequency is near 1/rev. That is, if A0y = y - y, 1is order u? small,

where v,/16 = Kp + /v2 + £p? - 1, then the roots are

(B[S I

¥y
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where the corner u are

- >

by (Yo
6 (16 - KP)
= IG (80)

and the constants C; and C, are given above ieq. (74)). For KP = 0, this
reduces to “gorner = +2(Avy/16).

The y - u plane boundaries are, writing y = y, + A4y, for the two real
root region

K

Ay 2 Yo p
=y —_—e (81)
T¢ 16 QE‘:‘]G;{
where v,/16 = Kp + vl + sz; and for the 1/rev critical region
Yo, Yo / 2
Kp 76 * 55 /1 + Kp
Ay = lJ2 16 3 (82)
16 Y

0
16 - Xp

1]
b
o
+
<
2%
+
»
o~
N
‘
ot

where v,/16 For Kp = 0 these boundaries reduce to

<

-—-—AY = 1 —0 =

T 0 with €=V (83)
AY = l 2 i I.g- = 2

16 + 5 M with 16 /vé -1 (84)

respectively. These results may be compar¢ ! with the y - u plane boundaries
of the independent blade, as illustrated in figures 2 to 6. For Kp = 0, the
two real root boundary is now a constant Yy line, that is, a horizontal line;
there is no Y/rev region at all; and the 1/rev region is the same when v = 1,
but narrower and not offset (C; = 0) when v > 1.

Consider the u root loci of the teetering rotor. When Kp = 0, as in
figure 1 for the independent blade, then for case (a) with v =1 and y = 10,
and case (b) with v =1 and y = 6 - that is, away from the 1/rev critical
region - there is no effect of u at all to order u?. The locus remains at
the hover value. For case (c) with v = 1.1 and y = 6, that is, near 1/rev,
the behavior is basically the same as for tiie independent blade. However, the
critical region is narrower now, and not offset, resulting in a higher value
for Weorner (0.407 compared to 0.286 for the independent blade). Notice that
if the gover root frequency were below 1/rev, then ucorner Would probably
decrease because of the absence of the critical region offset with the
teetering rotor; this is best seen on the y - y plane, as in figure 4.
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There is then considerably less influence of the periodic aerodynamic
forces on the teetering rotor flap stability, as compared to the independent
blade. This is the result of the internal cancelling of all the 1/rev, order
v flap moments. Specifically, there is no %/rev critical region, because of
the absence of 1/rev harmonics in the coefficients; the 1/rev critical region
is narrower, in general, and not offset if Kp = 0; and there is less influence
of u on the two real root boundary. If Kp = 0, the two real root boundary
does not change at all with u; this corresponds to the absence of a %/rev
critical region, which for the independent blade pushes the 0/rev boundary up
(as in figure 2).

In fact, unless the frequency of the hover root is near l/rev - and the
1/rev critical region is quite narrow, being only order u? wide - then using
a constant coefficient approximation gives exactly the correct eigenvalues to
order w2, That is, if the periodic coefficients in equation (58) are simply
dropped - and they are the reason for all this perturbation analysis - then
the onl; effect of u retained is the increase of the mean of Mg by the
factor (1 + u?); but that is the only effect that appears in the correct roots
for the teetering rotor anyway. This suggests that such a constant coeffi-
cient approximation may be an adequate representation for the teetering rotor
flapping dynamics (if the frequency of the root is kept away from 1/rev).

GIMBALLED ROTOR, THREE BLADES

Equations of Motion

Consider a gimballed rotor: three or more blades attached to a hubt with
cantilever root restraint, and the hub to the rotor shaft by a universal
joint. The possibility of a hub spring is included, so v > 1 is allowed
still. The blades do not move independently now, rather the entire rotor
roves as a whole about the gimbal bearings. There are two degrees of freedom
describing the rotor flap motion: longitudinal tip path plane tilt 8, and
lateral tip path plane tilt B8;s. The variables describe the rotor motion ‘n
the nonrotating frame; B8;. 1is defined positive for tilt forward, and B8;s is
positive for tilt toward the retreating side. All other modes of motion of
the rotor blades - such as the coning motion - are reacted by the cantilever
root stiffness, so will be neglected as higher frequency motions.

The flap motion of the mth blade is given now by

m)

B( = B1c COS ¥ *+ Bys sin yy (85)

The equations of motion for the gimballed rotor tip path plane tilt are
obtained {rom equilibrium of the pitch and roll moments on the hub. The equa-
tions may be obtained from the flap moment equilibrium for the mth blade

(eq. (57)) by the operators
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2 N 2 N
N 2z (.ocos ¥, g > (. JDsinyy (86)
n=1 m=1

The result of the summation operation depends on N when, as here, the equa-
tions have periodic coefficients. For a three bladed gimballed rotor, N = 3, ¥
the result is

Bic y [% + "'f% sin 3¢ 2 -y i%-cl‘ 3y Bic i
+

Bis Lz-u{{cossw % - v iz sin 30| \8is

2
2 . p X Y u Y o
v 1+u6c053w 8(1+T)+u3-sm3w /su;
+
N2 SRR IR, 2.1 -yY \e
3 (1 TFI + U 3 sin 3y \V 1 M g-ccs 3y 1s,
2 -
U . Y
%(1+T)+u%-sm 3y - Mg cos 3y 81c - KpBic
- (87)
3 .
- % cos 3y %-(1 + i.ui) -u %-51n 3] \615 - erls
The cases of N =4 and N > § will be considered in later sections. The
notation
Bic
-
B =
B1s
will be used for the degrees of freedom. ;
Hover é
In the hover limit, u = 0, the differential equation is
2 _ X
; |—§ 2, [FrrereE s R
g . B + B =0 (88)
- 2 _ A
|-2 % -!8- v 1+Kp-§
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The characteristic equation is

(x2+-}x+\>2-1+xp{.-)2+(2“3§)2-0 (89)

which has the solutions X = Ay * i and their conjugates, where

Ao---rYg+i/\)2+%Kp-(fg)2 (90)

is the rotating hover root. So the hover roots for the gimbal degrees of
freedom, which are in the nonrotating frame, are just the rotating roots
+1/rev frequency due to the transfer from rotating to nonrotating coordinates.
This hover result ANgp = Ag * i is true for any number of blades, in fact. In
forward flight the result is not this simple because the blades of a gimballed
rotor are not independent.

There are two degrees of freedom, hence, a total of four eigenvalues.
There is a high frequency mode with roots Agp + i and its conjugate, that is,
at frequency Imly + 1/rev; and a low frequency mode with roots iAp 1 and
its conjugate, that is, at frequency Imigp - 1/rev. The correspondence
between the rotating and nonrotating regions is then as follows:

Rotating frequency Nonrotating frequency

0/rev 1/rev
%/ rev % and 3/2/rev
1/rev 0 and 2/rev

The 0/rev rotating frequency means two real roots; it includes the case of
divergence instability. The regions, boundaries, and behavior of the roots
will be discussed in terms of the rotating frequencies, so that the results
may be compared with those of the single blade analysis.

The eigenvectors for the roots Ag + i are

Bic i
- (%)
B1s 1

that is, B)c/B s = ti; this corresponds to a wobbling or whirling motion of
the tip path plane.

Expansion in u

Let
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Order 1 Results

The order 1 equation is just the hover limit as ususl:

Yo 2 Yo Yo
+ 2 + ve - 1 + Kp = -
3230 K3 380 P g 8 ->
W |, x|™ | 2
SR R 3 R

Ths order 1 eigenvalues are then ) = ig % i and the conjugates, where

0 . '0 lo
XOI-'I—*I/\)?§_8KP-(—3-1

is the order 1 rotating hover root., The corresponding eigenvectors are
Bic/B1s = *i, so the solution for Eo is

i . -1 .
EO - Re|:801¢ (l)e(xo’#l)wo + Bo1- ( 1>Q(A°-1)w°]

(92)

(93)

(94)

The first term (subscript +) is the high frequency mode, the second (subscript

-) the low frequercy mode; 8o+ are complex functions orf the higher time

scales VYj,V¥2, etc.

Ordex u Results

The order u equation is

o




0 2. 0 Yo
BZE 3 2 3» v 1+Kp 3 3
i SO L, 7,
3!1102 2 Yo awo Yo 2 Yo
<3 o2 M
Y
Yo 21,00 s _ >
28, |B % lag, |FTTZN N tqpeos Mo |ag
= 2 + — ——
3y oV vy Y Yy ¥ Y
-2 Yo - =2 cos 3y —+.L sin 3y
8 12 0 8 12 0
Yo Y, Yo . Y1 . Yo .. Yo
< cos 3yp + Kp T+ Kp 5 sin 3y, -81-+—6-51n 3yp - Kp 2 cos 3¥g .
+ Bo

Yy Y ) Y Y .
- -81—+—6°— sin 3ygq - Kp—ég-cos 3o --69-cos 3o +szgl--l(p!£-sm 3P

Yo\ 98 Y 1 i
= [(Zko +.§Q. —3—:",—1—*-4--8—1 (Ao + Kp)Bon](l)eo‘oﬂ)wo

Y. 2 "
“igh (g -1+ 2xp)301+< )e“O 21)¥g
(S 1

Yo\ 2Bo1- Yy -1 Ag-1)y
+[(2>‘° * _80')_57b.f— + 5 (Ao + Kp)Bo)- . e(to-1)vo
. Yo . 1\ (agrai
+1i 53 (Ag + i+ ZKP)BOI- (1) e( 0 J¥o

+ conjugate (95)

The secular terms are the coefficients of the homogeneous solution

(*i> o (hoti)¥g
1

on the right-hand side of equation (95). Notice there are two homogeneous
solutions now (really four, including the complex conjugates), as in equa-
tion (94), and the coefficients of each must be set to zero. The resulting
equations give the order u corrections to the roots for the high and low

frequency modes.
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Assuming for now that Imiy # %/rev, then the secular terms are

Yo\ %81 . Vg
(2x0 * ) 5, 8 ot KplBore = 0

or
38
01+
- A = 0 96
5 18012 (96)
where
= (Ap + Kp)
Mo 21ImA,

-+
The solution is Bgy+ = Bgzs(¥2,. . .)e'1¥1, so the solution for By is

i . -1 .
8o = Re[}02+(l)e(lo+1)d'o+>\1m . Boz-( l)e(ko-l)wo'fhw:l 97)

Hence, the eigenvalues to order u are
A= Ap 2 '1+]JX1

2
S S AN SIS O ;
=T 16° 1¢//“ tg ke (16) * 1 (58)

which is just the rotating hover root +i still., With the secular terms set
to zero, the solution of equation (95) is

EI = Re[sll*C)e(A°+i)wo " 811_(.i)e()\o-i)¢°

-1 . i .
+A+801+( )e(ko-zl)%) "'A-BOI-( )e(AO*ZI)WO] (99)
1 1

where

vo (g +2Kp 7 1) (71)
Av = - 17 T 3itmg -1

which completes the solution to order .
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Order u? Results

The order u? equation is

Yo
> —
3282 8

Q

Y Y

2 0 0

vé-1+—=K —_

| g P 8 ‘§
+

1 : Yo 3
—_— 2 > 312 sin 3y 12 cos 3yYg a.gl

Y Yo .. Yi YO .o oau Yo
—62 cos 3yp +Kp —8-1—+ Kp s sin 3y, 3% sin 3yg - Kp ry cos 3y ;
1

Y1 Yo _. M Yo 1. Yo .
- g+ sin Swo-Kp-g-cos 3o - & cos 3 +Kp 3 Kp g Sin 3vg

Y

Yo LYo .2 3

8 2 a-é 3 + ¥ sin 3yg 12 cos 3yp a+0

9., —_
1

a2k, 228,
ay

+ +2 +
3y, 2 Vo 2 Yo | 3V2 Yo v Yo .
2 T - -1—2' cos 31’)0 ] - 12 sin 3‘#0

Yy Yy . Yl 2
<1z sin 3o - 77 ©os 3¥y Y 3 Kp + N

+ —_— Bo

Y Y, ¥ L1 Yo Y Yy Yo
1 2.1 g _2,.0 -2 ¢ Kp3 —>
- 17 05 Vo 3 -1z Sin 3o 116 Kp 5+ %> 16

Yo Y2
ek 3

H|-<
e

Yy Y1 Y1 1 !
< cos 3Yp + Kp % sin 3y 6 sin 3y - Kp 3 cos 3¢ ;
* 0

Y Y Y] o
L-Y-e-l— sin 3y - Kp -31— cos 3¢9 - —31- cos 3o - Kp -61- sin 3¢
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vy \ 98 Y, Yo\ SF
0 11+ oy _0*+
={(2*°’ s) ETRa “°*K")3“”(2‘°' 3 )

328 Y, 38 Y i .
* aqo;+ +-81- _'a-%i-t [ 2 (xg +Kp) +— Kp * (Xo + 2Kp)iA, ]Bou}(l)eo‘oﬂ)%
1

Yo -1 At
* [T% i+ l(p)ﬁon] (l)e( 0*1)¥o

Yo , . . Yo . . Yo .. Bpy1e
1% (-i)(xo + 2Kp - 1)B11+ +[-17 (-i) + (Zko +g- A+] T

-i -
JEISICIE R 3 Oorkp- i)A+]801+}( 1) o(Ao-21)¥0

38 3B a2
- 01- 01-
{(2X0+ 3 3\0 +— (XO"'KP)BII- (2)‘0‘* 8 50a + 34&12

Y1 B 12 Yo Yo . ] -i
Y E TR [’? (Ao +Kp) + - Kp + 5 (X0 + 2Kp) (-1)A.} Boa- , e

i :
+ [-Yl—%— (-i+ KP)BOI-]( > e(ko-x)d’o
1
Yo A 3801_
——'1()\0+2Kp“‘1)311- -171'0'(2)\0*-5-*'21 A_ —sw—l—'

Y. Y . 1\ (ag+2idy
+ —-1—1(A0+2K +1i) + 1 (A0+Kp+1)A_]301.]( )e( 0 0
[12 P 8 1

(R o-i)¥o

+ conjugate (100)

Asswuing that Img # 1, the secular term is
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Y Y

0 0 . .

88021 N Kp + T3 (Mo + 2Kp) ($1)A4 . e"lWl (101)
a‘bz 2 Zilmko 021

and the secular term of this is

19 kp + 13 (Ao + 2Kp) (£0)A,
‘8 = Np + 0 PI(T1)As
02 | 5, . B 17 Byt = 0 (102)

7y 2iTmhg

It follows that the eigenvalues to order u? are
Yo

Yo .
—é—' Kp +'i-2- (Ao + ZKP) (il)Ai.
ZImko

A= tivdgtury+udfr, +i

Yo .
2 — (Ap + 2Kp) (i)A,

= 44 - Y : 2 2y XY _( ) 2: 12 =
£ __16”/ +eu2) Lkp- (L) +ut T (103)

Which may be reduced to

2 \Y
A= il +p2 (2’—’4-) 2-

S X, il2 2y XL _(
16+1\: +(1+u)8l(p T%
1/2

:iuz(ﬁ)z(fg - %Kp (104)

and the conjugates.

Although derived here on the basis of complex roots, it may be
demonstrated that this expression is also valid when y is large enough so
that the rotating hover rcuts lie on the real axis. This single composite
expression then is valid . r all cases except when the hover root frequency is
near % or 1/rev. This result has some of the effects that have been seen for
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the independent hlade: the factor (1 + p2) correcting for the increase in the
mean of KpMg appears as usual, and the second order u? term in the radicand
is like the corresponding term for the independent blade (eq. (24)), although
half the magnitude. There are also now some order u2 effects that give
quite new behavior,however. There is an order u2 change in the *i shift of
the nonrotating roots. Secondly, the last order u? term in the radicand
produces, for the case of complex roots (i.e., as written), an order u?
change in the damping: an increase in the damping of the high frequency mode,
and a decrease for the low frequency mode. This is quite different from the
behavior seen so far, where the damping has always remained fixed at the hover
value -y/16 when the roots are outside the critical regions. For the case of
the rotating roots being real (i.e., bringing the i inside the radicand)
there is an order u¢ change in the frequency of the roots: the more stable
root going to higher frequency, and the less stable root to lower frequency.
These new effects will be seen again when the constant coefficient approxima-
tion is considered; a discussion oi their origin will be put off to that time,
since that is a problem of more general interest. The present discussion will
concentrate on outline the behavior of the eigenvalues produced by these new
terms.

Consider the order u? influence of forward flight on the divergence
boundary. When the rotating hover roots are real - the divergence boundary
being a special case of that - the last term in the radicand of equation (104)
produces an order u? change in the frequency. Hence

1/2
2. Y 2
24 8Kp¢4Kp
9 5. _1_)2_1.
vZe g Kp- (16 3

2
=- L YL 2 _ 2y Y
ReA 16:(16) 14y V2o (1+u?) ¥ Kp

Setting Rel = 0 for the divergence boundary, there follows the criterion for
divergence stability:

(1%)2 . %

The order u? influence on the right-hand side is just half the result for
the independent blade, so the criterion on negative Kp is more strict in
this case. The difference is only order u2, however. In the nonrotating
frame, this divergence instability occurs at a frequency order u? above
1/rev.

8
(1 +4u2) LKp > V2|1 4 2 g — 2 (105)

Consider now the behavior of the roots of the three-bladed gimballed
rotor near the boundary for two real roots (rotating). Recall the result for
the hover roots of individual blades, in the rotating frame; figure 9gag
illustrates the behavior, for variations in y. For v/16=Kp+vvZ+Kp2, the
two roots meet at the real axis, and then for larger y they proceed in
opposite directions along the real axis. The transformation to the
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nonrotating frame simply shifts this behavior by ti, so that the above
behavior occurs at *1/rev instead of on the real axis. The hover roots of
individual blades, will in the nonrotating frame thus have the behavior shown
in figure 9(b). This is also the behavior of the hover roots of the three-
bladed gimballed rotor, for y near the rotating real root boundary. This
should not be confused with the behavior of roots near a critical region; it
occurs here at *l/rev because of the transformation to the nonrotating frame.
The critical region behavior involves two roots, one at positive frequency and
one at negative frequency, which after crossing the critical region boundary
proceed in opposite directions on the A plane. The behavior near t¢ie real
root boundary involves four roots, two of which meet at 1/rev and two at
-1/rev; hence, the roots occur as complex conjugate pairs always.

In forward flight (u> 0) the behavior of the roots for individual blades
in the rotating frame is the same as that of the hover roots (i.e., as shown
in fig. 9(a)), just with an order u2 shift. Since the blades are independ-
ent, the transformation to the nonrotating frame can only shift the locus by
*i in forward flight as it did in hover; so figure 9(b) presents the behavior
of the roots of individual blades in the nonrotating frame for forward flight
as well as for hover. The three-bladed gimballed rotor, however, exhibits
different behavior near the real root boundary in forward flight. Instead of
the two roots meeting and then proceeding in opposite directions at 1/rev fre-
quency, the two branches of the loci only pass close to each other as illus-
trated in figure 9(c). That is, as u increases, the locus intersection
pulls apart. In terms of the y locus at a given u>0, as the branches
approach 1/rev there is a *+ order p? change in the damping (with a corre-
sponding change in the conjugate roots, so this is not critical region
behavior); eventually the roots transition to more like the two real root
behavior (at 1/rev frequency nonrotating), but with a * order p2 differ-
ence in the frequency. Such behavior is, in fact, typical of the dynamics of
coupled degrees of freedom; the root loci do not cross, but rather only pass
close to one another, pulling farther apart as the coupling increases (in this
case, as u increases). The source of this behavior is the last term in the
radicand of equatioh (104) for A. There is, in addition, the order u?
change in the *i term of equation (104), so all this occurs really at not
quite *l/rev.

It follows then, that when u > 0 the three-bladed gimballed rotor does
not have a definite real root boundary. Rather there is a gradual transition
from primarily complex root behavior to primarily real root behavior. Examine
now the locus in the neighborhood of the real root boundary. Write
Y = vy + wly, where y, = Kp + /w2 + Kp2, so y is order u? from the hover
real root boﬁndary. Look at the root near the l/rev frequency, and near the
-y/16 real part; that is, let AX be defined by

2
A = 1{1 + u? 3;’-[% (I—g-) + v“]} - 115 + A\ (106)

Then, from equation (104),
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Yo (Y Y Y
Al‘u/ (—% Kp)--slxp--lgﬁv‘*-i-g"-vz (107)
This may be separated into real and imaginary parts:
Y Y Y
(Read)2 - (ImAN)2 = u2 [-52- - Kp) 0 kp - lgév'*] (108)
1 2Y 2
(ReA)) (ImAX) = - FHE GV (109)

The last equation shows that the locus on the AX plane (i.e., on the A
plane, but with a shifted origin) is a hyperbola. The point of closest
approach of the two branches occurs at

-
ReAX = -ImAX = ""‘/T% v (110)

and the minimum separation of the branches is there

Y
2)8Mgyn = v 3 ST (111)

The separation of the branches then is order u. This point of closest
approach may be taken as the definition of the real root boundary for this
case, With ReAM = -ImAX, equation (108) then gives the boundary as

or

g-v"’(.l(p + N2+ Kp2)+ Kp
sz + sz

(112)

For Kp = 0 this reduces to vy/16 = v[l + ) (8/4\9 J. Notice that this is the
same as would be obtained if the last term j7: tue radicand of A (eq. (104)) -
which is causing all this behavior - were SLH)K’ ignored. Setting the
radicand to zero without this term gives exa - ' the above boundary. The
boundary obtained is sxmllar in behavior to thacv of the individual blades; but
again the second order u2? in the radicand of equation (104) has only half
the magnitude. Hence, the 4y of the boundary for Kp = 0, for example, is
only half as large as for the independent blade.
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Near %/rev Frequency

Consider now the case Imiy = 1/2, when the nonrotating roots are at
3/2/rev and -Y/rev frequency. The order u secular equation for Bp;- is
unchanged for this case, hence, the low frequency mode (Ay - i) does not have
a critical region when the rotating frequency is near %/rev. The order u Iy
root is the same as equation (98) then, that is, there is no forward flight
influence on the lower frequency root to order u when Im\g = 1/2. The
secular equation for Bp;+ is, however, changed for this case, and so the
high frequency mode does encounter the %/rev critical region. The complete
rotor behavior is given, of course,by both the low and high frequency modes
taken together; when the high frequency roots encounter the !%/rev region, the -
entire rotor does, even though only two of the four roots participate in the
critical region behavior.

When Imig = 1/2, the order u secular term for B8p;, is

3801,
Y

2 2
Y Y Y
S ETCHR, AT R

This is the same secular equation and D? as for the }/rev critical region of
the independent blade. It follows then that the root behavior is the same as
that solution, specifically the expressions for the -~ritical region boundary,
and for ) near the region (eq. (32) and (34)) are applicable here as well -
adding i to A to transform it to the high frequency mode in the nonrotating
frame.

Yo Y i\ =
- A1801+ + 1z (— l—g' + ZKP + -2-) 801+ =0 (113

sO

Near 1/rev Frequency

Consider the case Im\y = 1, so the nonrotating roots are a ( and 2/rev. 3
The order u analysis is applicable, since Imig # 1/2, and the order u? %
analysis is correct for the high frequency mode even when Imip = 1. Hence, :
the high frequency roots (near 2/rev frequency in the nonrotating frame) are
given by the same expression as for the roots away from the critical regions
(eq. (104)). The low frequency mode, however, (near O/rev nonrotating) has an
additional term in the order u? secular term when Imig = 1; instead of
equation (101), 8;)-. is now given by
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Yo\ 811- My
-[Zko * -g-)Tw;—*' - (o * Kp)Bn1-

Yo\ %Bg2- Y Y Y
=|(2x0+-§—) *[Alz*—zsl)‘1+_taz'()‘°’xp)*—ég'(?

+ % (g * 2Kp)(-i)A_]802-}e)‘1w1
y 1=
N [-1-2- i+ Kp)eoz.]e“"l (115)

Unless A; is real, so X1 = A;, the secular equation for Bg2-(¥2) is the
same as before, however. Then,equation (104) holds for the lower frequency
mode also, except when the frequency is order u? from 1l/rev (rotating).
Requiring A; be real means vy = 0; the secular term of equation (115) is
then

3Bgs,.- . Yo Yo 2 i 1 /Y0 2 Yo
7 “2'1T5KP*(T7 7% 72 1—2) ('13*2"*’)

Y
2 v2 - 1% Kp + 4Kp2

. (Yo Yo .
-1 (n- 3 Bo2- * 33 Qa - IKP)B-OZ- =0 (116)
So
2 2 X0 xp4ak2 ’ 2
2 vé - +
D2= (Y_O_K)Yz-o-.l. Y_o-) 0(1—0-) 8 P P =K -Y—g- -(Yo (1+K2)
16 P/ 16" 2 \12 6 24 P16 37, P

(117)

which has similarities to the results for both the individual blade and the

teetering rotor. The boundary of the critical region is defined by D2 = 0;
letting Y = vy, + Ay with Ay order u? small, then the boundary is

Y
BB k) - 2 ¢ G a)

or in terms of the corner u
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2 % G% - KP) (119)

T TG G

ulz»uz

This is the usual form, with now

v
2 292 .42 2
R W AL) _(10_)“ i i ML (120)
177 7\1 6 24 P 1T
y
c2=-3-g- /1 + Kp? (121)

Cp, which gives the width of the critical region on the y - u plane, is the
same as for the teetering rotor; hence, the width is, in general, smallex than
for the individual blade, except for v = 1, in which case the widths are
equal. Cj, which gives the offset of the region, is similar to the individual
blade result. The first term is new, however, corresponding to the new order
p? shift in the *i frequency of the roots away from the critical region

(eq. (104)); and the second term has half the magnitude, corresponding to the
second order u2 tera in the radicand of equation (104). The eigenvalue of
the low frequency mode is now

<
N

Yo 2
i T

- 8 . Ay (Yo u? y?
g fgetn] e G- /(- 5)0-5)

£ - 2 (%%)2(- ;% + ZKP) + iu2D

o

(122)

So the eigenvalue also has a new term, an order u? damping change,
corresponding to the third order u? term in the radicand of eguation (104).
For Kp = 0, the criterion for Imiy = 1 reduces to 70/16 = vYve - 1,

equations (120) and (121) become

Y 2 Y 2 2
cl"%’(rg (7;(l 1}’1--787(\:2-1)(\»%3) (123)
v
C""z"‘;’“’z‘l (124)

so the boundary reduces to
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Ay

2 ,.2 - 16
H1T,H2" = (125)
-Zglvz-l(vz#S)t%

and the eigenvalues to

Y 8 ‘4 Ay uz 2
x=-ﬁ[1-u2§(v2-1)]-1-1-6/\;2-1’/(-?)( -;“2—2> (126)

Compared to the individual blade result, the boundaries are identical if

v =1, but if v > 1 this boundary is offset more, with a smaller width. Com-
pared to the teetering rotor, the width is i~ same but the teetering rctor is
not offset even when v > 1.

Summary

For the hover limit, ¢ = 0, the four eigenvalues of the three-bladed
gimballed rotor are

)\=ti--i%+i/:2+%l(p-(l%)2 127

and their conjugates. For the hover frequency away from )/rev or 1/rev
(rotating), the roots to order u are the same as the hover roots, and to
order u2, they are given by equation (104) above. The influence of forward
flight consists of: an order u? frequency change, similar to the individual
blade but with reduced magnitude; an order u2 change in the i frequency
shift due to the transformation to the nonrotating frame; and a * order ul
change in the damping of complex roots of the frequency for real roots. The
latter change has the effect of pulling apart the real root intersection of
the locus (at *l/rev frequency nonrotating), so that the root loci only pass
close when u > 0 rather than actually intersecting (the separation is order
u). The criterion for divergence stability is, in this case

2 2
v
>  —
2y Y 2 2_3_(;1]‘;)___2_
(1 + u®) 3 Kp > -vé]l + 3 7 (128)
(%) + %

The 4/rev critical region is identical to that of the individual blades.
Only the high frequency mode, at 3/2/rev nonrotating frequency, participates
in this region, however. The low frequency mode, at )/rev, has the same
behavior as it does away from the critical region - that is, no forward flight
influence at all to order .
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If Ay =y -y, is order u? small, where Y, is the value required

for Im\g = 1, that is, v,/16 = Kp + A2 + Kp? - 1; then tke low frequency
mode, at O/rev nonrotatlng frequency, encounters the 1/rev critical region.
The high frequency mode does not participate in the critical region behavior;
its roots are given by the same expression as away from the critical region,
that is, equation (104). The low frequency ro..: are given by

(129)
where the corner u? ure
(2. «x
2 2 _16 P) 130
H17,H2 7, C ( )

-
B

2

with C; and C; given by equations (120) and (121) above. The behavior of
the loci in the critical region is similar to what has been seen before with
the individual blades and the teetering rotor. There are now, however, order
u2 changes in the frequency and damping (in C;, and explicitly in RecA
above) corresponding to the changes seen away from the critical region, as
well as some changes in the magnitude of the forward flight influence.

The y - u plane boundary for the two real root region (%l/rev
intersecticn nonrotating), writing vy = Yo * Ay, is

-8.2- N2 Kp2
zh9v(xp*v+")*xp (131)

Ay
=y
1€ 16 i

where y,/16 = Kp + V2 + Kp2. This is only a soft boundary, however, the
point of closest approach of the branches when u > G. The Y/rev critical
region boundaries {3/2/rev nonrotating) are

Yo /2 Yo 2
Ay 3 v - 3 Kp * 4Kp
oasy (132)
Yo - K
6P

where v,/16 = Kp + N2 . Kp2 - (1/4); and the 1/rev critical region
boundarxes (0/rev nonrotating) are

n

2 C

Ay 2 2
= Y -————-—-
s ‘1' - Kp (133)
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where v, /16 = Kp + V2 + Kp2 - 1. For Kp = 0 these boundaries reduce to

&y, 28 3 ith 0.

T with i€V (134)

A o, 2 ien SO0 [o2_ 1

16 +y 7V with 3 v 7 (135)
Y

% . u2[. -2%- A2 1 (v2+3) %] with 7= A2 .1 (136)

respectively,
GIMBALLED ROTOR, FOUR BLADES

The equation of motion for a four-bladed gimballed rotor are

2
. 2 2 L g X i
(Bzc)" % Z-I/f?xc)' ve-ley 16 sin 4y 8(1*-:— -z-cosdv) Bic
+
<L

-2 %J\Bls

+
2 2
B1s -%(1-‘-'2-*52- cos 4ub) vi-1-y? 16 s'n 49| \8)s

2 2
% (1 +%—-l‘§- cos 41») -ul -1% sin 4y 01c - KpBlc\
= (137)
2
-u? %5 sin 4y %— (1 o-;— u? +Ez— cos 4y 81s - KpBs

The only forward flight effects remaining are order 12, the order u momen:
cancelling internally at the hub as they did for the teetering rotor. The
only periodic coefficients remaining are order u?, hence, only a l/rev
critical region is expected.

The hover result is identical to that of the N = 3 case; that result,

in fact, holds for all N > 3. Only order u? terms appear in the equations
of motion, so an expansion in u? is used:
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The order 1 solutio
result. The soluti

s d
Bo = Re [802

9 _ 9 2 _9
50 - avg Y B
> > o

B =Bg + UB2*+. -

Y0+u272+..

<
It

n is the hover limit again, so is the same as the N =3

on for B¢ 1S
.)(—i>e(’\o—i)¢o]
1

i .
+(‘P2.---)(1)e()‘°+1)¢0 + 602-(\"2:' .

(138)
Order u?2 Results
The order u? equation is
Yo 2 Yo Yo
az—g —g‘ 2 3'8’2 ve -1+ Kp ) -§-
Tou o T k2
0 , Yol©vo Yo 2 Yo
-2 3 - g vé -1+ Kp )
Yo Y2 Yo Y2 Yo
> A Kp — L, -
328, g ¢ 3, Y, '+0 S 2 g ' 16 .
=2 2 ——* --—+-§-—-—-+ Bo
S T kp g * 7 16,
19 sin 4yYg - K ) cos 4y - Y cos 4¢y - K Yo sin 4y
Te Sit 4o - *p Tg 0 16 o-Kp1g o,
+ Bo
Yo Y0 gin 4 Y0 gin 4 Ky 2 4
- 16 cos 4y - Kp 16 sin 4yp - 13-51n Yo + Kp 1% cos 4yp
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Yo) 28 Y, i .
) ‘(21\0 * %) Tl [ (o + Kp) + 5 KP]Boz ’ (1)euoﬂ)w0
i 8 : s .
+ —.I_g' (1 + KP)BOZ"‘]( 1)6(10*1)“'0 + [;% (—i + KP)BOZ"]< ‘)e(x0'31)¢0

+ (zxo + —0-) [Igz. (Ag + Kp) + .82 Kp] 302_}(-i)e(ko-i)wo

- i s Yo .. i (hg*31)¥g
+ -I% (-1 + KP)BOZ:J(I)e(RO l)ﬂ!o + [—iz- i+ KP)BOZ.](I)O

+ conjugate (139)

Assuming that ImAg # 1, the secular term is

3Bp2s

where

Y2 Yo

T(Xo + Kp) +-§-Kp
2iImk,

Aza-

Tge solution is Bpo+ = Equz(Wy,. ..)exzwz. Hence, the eigenvalues to order
M are

A= g+ uiap ti

IR iJ/:Z + (w2 LKy - (f%)z (141)

and the conjugates. This is the same result as for the teetering rotor roots
away from the l/rev critical region. It follows then that the real root
boundary (at tl/rev nonrotating) and the divergence stability criterion are
the same as for the teetering rotor.

Near l/rev Frequency

If the hover roocs are order u2 from 1/rev frequency (rotating) - that
is, Imig = 1 - then, the periodic coefficients contribute to the order u?

secular terms:
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3B Y _
02% - - i ..._0 i =
Ty, - 2802t - 1 g7 (1 + Kp)Bozs = O (142)

Comparing this with the teetering rotor 1l/rev secular equation, it follows
that the four-bladed gimballed rotor has identical expressions for the roots
and boundaries of the l/rev critical region.

Summary

The behavior of the four-bladed gimballed rotor is the same as that of
the teetering rotor flap stability - except, of course, that thz gimballed
rotor has four roots, in the nonrotating frame, hence, shifted by *i from the
teetering rotor roots (rotating). As for the teetering rotor, it also follows
here that the constant coefficient approximation to the equations of motion,
even in the rotating frame so the only forward flight influence retained is
the factor of (1 + u2) in the mean of Mg, gives exactly the correct
eigenvalues except near the 1/rev critical region.

Away from the critical region, the eigenvalues of the four-bladed
gimballed rotor are

2
A:ti-%é-+i/)2+(1+u2)%l(p-(%g) (143)

and their conjugates. There is no !/rev critical region. The 1l/rev critical
region is the same as for the teetering rotor; both the high frequency and low
frequency modes (at 2/rev and O/rev nonrotating) participate in the critical
region behavior. The y - u plane boundaries are the same as given for the

teetering rotor.

GIMBALLED ROTOR, FIVE OR MORE BLADES

For a gimballed rotor with five or more blades, the equation of motion is

2
(Blc)" % 2 Cm). vZ -1 % (1 + PT (31c)
+ +
\81s -2 X[\ -} (1_2;_) w2 < 1 B1s
%— (1 + ‘—";-) 0 8:c - KpBic
- (144)
0 'g' (1 *3 “2) 81s - KpBys
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So to order u? there are no periodic coefficients when N > 5. All the
periodic flap moments cancel internally at the rotor hub, and do not contrib-
ute to the net pitch and roll moments on the rotor disk. The result is a con-
stant coefficient differential equation for the gimballed rotor with five or
more blades. The eigenvalues of this rotor are given by the roots of the
characteristic equation of

. 2 2
2., X 2 _ Y u X n-
A +8>\+v 1+Kp8(1+2) 2)\+8(1+ 2) Blc\
- - X l-ﬁ) 22+ L+ v2-14+K Y(1+3u B1‘)
8 p3 8 PE )
or

2 2 2
2., 2 _ Y 2 XY - (L 2y o
P2efrsvi-1empiacdd] « @ %) -u() awd =0
(145)

As a constant coefficient equation, the eigenvalues are simply the roots of a
polynomial, although in this case it is a fourth-order polynomial, which may,
in general, only be solved numerically. Since the roots for the limit u = 0
are known, however, - that is, the hover roots - a perturbation technique may
be used to obtain explicitly expressions for X including the influence of
forward flight.

Only order uZ and y* terms appear in the cbaracteristic equation, so an
expansion in u? is used. Write X = Ag £ i + u?x, + . . . and the conju-
gates, where 1Ay 1is the rotating hover root as usual:

Y Y Yo\
xoa-i%+i/v2+%2xp-(l-g (146)

The Lock number is also expanded as a series in u: y = Yo * u%y,. . .. The
order 1 characteristic equation then has just the solutions A = Ko i,

Xo t i. That is, the order 1 term in the expansion of A above is indeed the
correct hover limit,

Order p2 Results

The order u2 terms of the characteristic equation are

Y
[(Ao $i)2 +—§ (Moti)+vZ-1+Kp 1%9_][200 :i)x2+1§- A2
Y . Y Y Y y
+ -‘81 (Ao i) + KP TO*KP {]’%(Xo i) *%](2)2 +—82-)-0
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or
(Im)g £ 1)[(2iImA0)A2 + Kp %% + %% (hp ~ Kp)] = 0 (147)

Assuming that 1Imig # 1 when the lower frequency root Xy - 1 1is being
considered, so Imig - 1 # 0, then the solution is

Y2 Yo
5 Qo+ XKp) + 5 Kp

= i 1
AZ 1 21m>\0 ( 48)

It follows then that the eigenvalues to order u2? are

2
= i -~ -Y-— 1 2 2 l - ..!—
A= #i i * 1¢/C + (1 + u9) 5 Kp (16) (149)

and the conjugates. The real root boundary and the divergence criterion are
the same as given for the teetering rotor.

Notice that this is the same result as would have been obtained if a
constant coefficient apprcximation were made in the rotating frame before
finding the net pitch and roll moments. Actually, the expansion of A as a
series in u? is not really necessary, for to order u2 the last term in the
characteristic equation (the u* term in eq. (145)) drops and X may be
found directly, exactly as for the hover case. However, such a procedure does
not show that the solution is not valid for the low frequency mode near 1/rev
(rotating frequency).

Near 1/rev Frequency

This is where the critical region is encountered when the equations have
periodic coefficients, that is, when Imig = 1. The high frequency mode is
at 2/rev nonrotating frequency, and the roots must remain complex conjugates
since this is a constant coefficient equation. Hence, the 1/rev critical
region behavior cannot be encountered for this mode. Indeed, the order u?
result obtained above holds for the \g + i root, even when Imip = 1 (the
upper sign is used in eq. (147), so the first factor has the value 2). The
low frequency mode, however, is at 0/rev nonrotating frequency, so these roots
are able to meet and proceed in opposite directions along the real axis. This
is the 1/rev critical region behavior which is allowed for this constant
coefficient equation because the transformation to the nonrotating frame puts
these roots near the real axis instead of 1/rev.

Consider the low frequency mode when Imig = 1; that is,
A= -(yg/16) + u2x; + . . .. The order u? characteristic equation is
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identially zero then (eq. (147), using the lower sign so the first factor has
the value 0 when Im\y = 1), and it is necessary to go to order u* to find
A,. The order u' terms in the characteristic equation are for this case

Yo Yo Yo 2 Y 2 Yo \2

or
(» +ll)2 = -p2 (150)
22T 16) T T

where

2 2
Y Y Y Y

2 - |2(. 10 L (L 2
D —[16( 16+Kp)+l(p 16] (32>(1+Kp)

Setting D2 = 0 gives Ay = -y,/16, so A = -y/16 to order u2. Hence, D2 = 0
is the boundary for two real roots in the nonrotating frame, or the 1/rev
boundary in the rotating frame. In general, the root is

s Yo, of Y2, )l 24
) -_ﬁw(.m:m)--gtum (151)

The expressions for ) and D are identical to the corresponding ones for the
teetering rotor, or for the four-bladed gimballed rotor, near the 1l/rev criti-
cal region. Thus, the gimballed rotor with five or more blades encounters a
1/rev critical region, although only the lower frequency mode (near the real
axis nonrotating) participates in the critical region behavior. T boundary
of the region, and the solution for A, are the same as were given Or the
teetering rotor (-i to get to the low frequency nonrotating mode).

Summary

The gimballed rotor with five or more blades is described by constant
coefficient differential equations. The behavior of the roots is, however,
nearly identical to that of a teetering rotor or a four-bladed gimballed rotor;
the latter is perhaps a better comparison since it is also a case with non-
rotating degrees of freedom. Away from 1/rev rotating frequency, the roots
are given by

2
A=ti--11’6-+i/v2+(1+u2)38-l(p-(1!5-) (152)
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and the conjugates. The real root boundary (*1/rev nonrotating) and the
divergence criterion are the same as for the teetering rotor.

A critical region is encountered by this rotor, when the rotating
frequency is near 1/rev. The expressions for the boundary and the roots near
the critical region are the same as for the teetering rotor. Only the lower
frequency mode participates in the 1/rev critical region, however, for it is
the fact that this mode is near the real axis (nonrotating) that allows the
critical region behavior to occur with a system described by constant coeffi-
cient differential equations. The high frequency modes are near 2/rev for
this case, and so are still given by equation (152), that is, have the same
behavior as away from the critical region,

The equations of motion for the gimballed rotor with N > 5 are identical
to the constant coefficient approximation of the equations for the three or
four-bladed gimballed rotors (i.e., eq. (87) or (137) with the periodic terms
dropped). Hence, the solution for N > 5 may be considered as a constant
coefficient approximation to the dynamics of the N = 3 or 4 cases.

As a constant coefficient approximation to the N=4 case, this present
solution gives exactly the correct roots with the exception of the high fre-
quency mode near the 1/rev critical region., These roots for the N = 4 case
encounter the critical region along with the lower frequency roots; but for
the constant coefficient approximation s:<h behavior is not allowed for the
high frequency roots if they are to remain complex conjugates. The behavior
of the low frequency roots is given correctly everywhere, including the 1/rev
critical region, because in the nonrotating frame that behavior occurs on the
real axis. Away from the 1/rev critical region, it is, in fact, possible to
make the constant coefficient approximation in the rotating frame, before
finding the net pitch and roll moments, and still obtain the correct
expressions for the roots of the four-bladed gimballed rotor.

As a constant coefficient approximation to the N = 3 case, this present
solution is not really good anywhere. The errors are not even order u? only,
because the three-bladed gimballed rotor encounters the %/rev critical region
where there are order u effects of forward flight. The order u? effects
on the rocts, both away from and near the 1l/rev critical region, are, in addi-
tion, quite different for the N = 3 case.

EQUATICONS OF MOTION IN THE NONROTATING FRAME

Consider a rotor with N independent blades, each with rotating natural
frequency v. The flap motion of the entire rotor is described by the N
degrees of freedom B(m), and the N rotating equations of motion given above
(eq. (587)), in contrast to the gimballed rotor, which is described by onl/ two
degrees of freedom and equations for all N > 3. As for the gimballed rctor,
however, the motion of the rotor with independently flapping blades may also
be described in e nonrotating frame. The following new degrees of freedom
are introduced:
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N \
8o %E g (m)

m=1

N
2: 8™ cos Ny
m=1 , (153)

N
Bns % E B(m) sin nyy
m=1

Zj

Bnc

N
1
Bny2 = 'ﬁ'mzz:l g -y™

- where yp = ¥ + mAy is the azimuth location of the mth blade and
» Ay = 2w/N is the interval between the blades. The flap motion of the mth
' blade is then given by

8(M = gy + 3 (Bpe €OS iy + Bpg Sin niy) + BN/z(-l)m (154)

‘ where the sum over n goes from 1 to (N - 1)/2 for N odd, and from 1 to
Lo (N - 2)/2 for N even. The BN/2 degree of freedom only appears if N is
' even.

' This is a Fourier coordinate transformation from the N degrees of
freedom g (m) describing the rotor motion in the rotating frame to the N
degrees of freedom Bo, 8nc, Bnss BN/2 describing the rotor motion in the
nonrotating frame (for further discussion, see, i.e., ref. 13). The B8y
variable is the rotor coning motion; B¢ and R;s are the tip path plane longi-
tudinal and lateral tilt degrees of freedom as for the gimballed rotor. The

! By/2 motion is similar to the coning except that the blades alternate in up

- and down motion. This coordinate transformation must be accompanied by a con-

' version of the equations of motion from the rotating frame (eq. (57)) to the

nonrotating frame. This is accomplished by operating on the equations of

motion with the following summation operators:

% fn"_‘,(...), % %:(...)cos s ﬁ- %:(...)sin Mm, 3G ED"

m
(155)

The summations combine the equations for flap moment equilibrium into the

¢ rotor moment equilibrium appropriate to the nonrotating degrees of frecdom.

' For example, for the coning motion, the first onerator finds the coning moment;
by and for the B¢ and B)s motion, the operators fin; the net pitch and roll
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moments on the disk as was done for the gimballed rotor.
equations in thc nonrotating frame are coupled,

fixed rotor as here in contrast to the rotating equations, which are not

coupled at all (eq.

where, as here, the equations have periodic coefficients.
N nonrotating equations depend on N.
{ equations describing the rotor flap motion of N

(57)).

The resulting N
even for the case of a shaft

The result of the summation operators depends on the number of blades (N)

The

Hence, the set
complete sets of differential

of

independent blades excited

by blade pitch inputs only are given below for the cases N = 3 and N =
N=3
0 i 0 ¥ 12 Bo
' Bic 10 %+u-l-%sm3w 2—u-Lcos 3y Bic
»” Y :
1s by-g -2 -y {%-cos 3y §-- U 41-51n 3y B1s
2 2 X 2 1 T
v U 16 sin 3y -u cos I 0
+ “'Ye'* u218-51n 3P v2-1+u%cos Ky (1+ )+u-—sm31u Bic
| ! 2
w2 X A Il Y si -1-u XL
{ u cos 3y 8 1 2) W 4 sin 3y 1 Mg cos 3y 1
;
. [y 2 -u?2 L Y_,2 X K
i §-(1 + ue) 16 0 3y Mg~k 1g sin 3 0 - KpBo
! = —uz%cos 3y g—(l+7)+u%sin k1] -u%cos Iy 8)c-KpBic
Y o2 X g X Y (1+302)-pt -
$}~{ .P 7~ WS g sin 3y W g cos 3 g (14-2u ) ug sin 39 \8,5-KpBys
(156)
1
=2
(
{
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The derivation and discussions of these equations may be found in the
literature, for example in references 13 and 18,

The transformation to nonrotating degrees of freedom and equations of
motion has the effect of sweeping the periodic coefficients from the lower
degrees of freedom, especially as N increases. There are, however, always
periodic coefficients in the nonrotating equations where u > 0, just as there
are in the rctating equations, for the same system is being described and a
constant coefficient set of equations could never give the behavior that has
been found with the periodic coefficients.

The flap dynamics described by these sets of differential equations is
nothing new. This is still a set of N independent blades and simply observ-
ing the motion in the nonrotating frame does not change the nature cf the sys-
tem. Hence, the eigenvalues must still be as calculated above for the case of

a single independent blade; the only change is a #ni for the g /Bpns modrs, .

that is, a #n/rev shift in the frequency to account for the transformation
from rotating to nonrotating frames. The perturbation solution for these
equations, including the influence of the periodic coefficients in forward
flight, has already been obtained then. The value of the description of the
rotor by these nonrota:ing degrees of freedom and equations lies in its use for
dynamics involving the helicopter body or shaft motion, aerodynamic gust, or
any other excitation from the nonrotating frame. The rotor responds to such
excitation as a whole, in nonrotating modes of motion, so this description of
the rotor motion and moment equilibrium is appropriate for studying such prob-
lems. For the current investigation, the use of these nonrotating equations
is that they provide a basis for a constant coefficient approximation for the
rotor flap dynamics.

CONSTANT COEFFICIENT APPROXIMATION

As should be quite apparent by now, differential equations with periodic
coefficients require considerably more &nalysis than constant coefficient
equations, even to simply find the eigenvalues. Constant coefficient differ-
ential equavions are much preferable for the studies of dynamic systems. Can
the fl: dynamics of a hzlicopter rotor in forward flight be adequately
describeu by some constant coefficient approximation to the equations of
motion? The constant coefficient approximations for the teetering and gim-
balled rotors were discussed along with their perturbation solutions including
the periodic coefficients; this section will be concerned with the case of
individually flapping blades.

Consider the rotating equation of motion for g (m) (eq. (57)). The

constant coefficient approximation to that equation, that is, using only the
mean values of the coefficients, is

B+ [vi s 1+ ud) %KP]B = 0 (158)

™
+
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The eigenvalues of which are

S N R T as»

The only influence of forward flight is the order u? increase in the mean of
Mg, so in the effectiveness of Kp. Consider this equation and its roots zs a
representation of the flap dynamics of an independent blade in forward flight.
A correct estimate of the eigenvalues to order u is obtained with such a
representation, except near the /rev critical region, simply because neither
this constant coefficient approximation nor the correct solution away from the
%/rev region show any order u effects. To order wu?, this approximation is
not correct even away from the critical regions.

With the constant coefficient approximation made in the rotating equation,
the result is virtually just the hover root; so the question of the applica-
bility of that approximation is really whether the hover roots may be used as
a measure of the flap dynamics in forward flight as well as in hover. This
approximation misses the %/rev and 1/rev critical regions entirely, and so
provides no information at all about those effects. Away from the critical
regions, however, the correct roots show only quite small influence of forward |
flight, as for example case (c) in figure 1. This constant coefficient
approximation - that is, the hover root - may be considered a reasonable
representation for such cases. It should be noticed, however, that the
influeince of the critical regions becomes greater as u increases, so this
approximation m st eventually break down for every case.

The nonrotating equations of motion provide another source of a constant
coefficient approximation to tne flap dynamics of a rotor with N independent
blades. The transformation to the nonrotating frame is accomplished first,
and then the averaged coefficients are found. The harmonics of the coeffici-
ents of the rotating equation contribute to the constant coefficients in the
nonrotating frame, hence, this procedure retains more of the influence of the
periodic coefficients. For N = 3, the resulting equations of motion are
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2 . X Y
\Y -f MB + 2 MB 0 Bo
l1c 28 0
_ 2 _ _X _ LY 2C
+ YMB v 1 > MB YMé vl MB Bic
- I.Mzc M?- Mzc 2 _
L_0 7 Ma +y 4 3 v 1 ] B1s
i U Y 1s h
0 2¢
=| 0 My + T Mg 0 81c - KpBjc (160)
18 0 2¢
™y O Mg - T Mg | \e1s - Kpys

where use has bevn made of the following Fourier series representations >f :he
flap moments in forward flight:

0 1s 2¢
Me Me + Me sin ¢ + Me cos 2y + .

H

0 1s . 2¢
M. =M. + M., sin ¢y + M, cos 2} + .
8 8 8

c
M; cos y + M;S sin 2y + .

=
©w
[}

The missing harmonics is a general result valid for all u, even including the
reverse flow region effects. Substituiing for .“e harmonics of the flap
moments from equation (2), that is, neglecting revei.c flow as usual for the
present order p? analysis, the equations are
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Bo \ g‘ 0 U‘I.!Z— 30
Bic | *+ 0 % 2 Bic
Y 2 X 8
B1s LP 3 - 3 15
v2+(1+u2)’8ixp 0 Kpu % ] Bg
2 2
Y 2 _ 1Y Y v a
*lv g v l+(1+2)81(p 8(1+ 2) Bic 0 (161)
?
Y [y . RO 2 _ 3 2\Y
Kpw % 8(1 2) v 1+(1+-§-u)8Kll B1s

This is the constant coefficient approximation, in the nonrotating frame, for
the flap dynamizs of a rotor with three indeperdent blades. It may also e
obtained from equation (156), by dropping the 3/rev terms in the coefficicats.

The approximate eigenvalues are then solutions of th: characteristic
equation

[>2+%_x+v2+xp%(1+u2,]{[x2+§x+v2-1+xp 3 (1+u2)]

. (2“38)2 -t -116)2(1 +xpz)} -2 (1-2- z(x+2xp)[zx+ (1 ---)]
- 2 -11'522(“2&9) [120—8-X+\)2-1*l(p (“T)J (162)

orly u? ané u terms appear, so cons1der an expansion in u?:

A= Ag + 2y + . . ., 0r A= Ag iy’ 2x2 + . . ., and che conjugates, for
the coning mode and B;./8,s modes, respectively. The Lock number is also
expaaded as 1 series: y = yp ¢+ uzyz + . . .; and Ay is the rotating hover
roct as usual:

Yo .//'2 Yo Yoy
r-e /e g (g

To order 1, the solucion for the rots is just X = Xg, Ao ¢+ i and their

conjugates, verifying that the above expansion is correct for the hover limit.

Coning Modes

Cons1der the coning mode roots in forward flight, that is, the expansion

A= )g + oy Az + .. .. The order u? terms in the characteristic equation
give then
6%
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Yo, Y2 Yo Yy Yoy2
(2)\0)‘2 + 3 M2 +—8- Ag + Kp 3 +Kp -§—) [1+ (2)‘0 + _&_)
Yoy ) Yo) Yc)z 12 =
- () 200 + 2Ry (200 + ) + (32) 200 + 2Kp)2 = 0

or

Y
. 2 Y2 Yo Yo
Yo e, [ Y
+(13) 2(‘" -3 Ko+ 4Kp2> =0  (163)

Assuming that Takg # 1/2, the root to order u? is then

v2 - Kp + 4Kp?

e Qo) b

2
I SRR AV 2y Y o (XL 2 8
A= -qgti M g ke (T5) |1+ 9

(lo4)

This is exactly the correct result for the eigenvalues away from the critical
regions, that is, equation (24). The real root boundary and divergence crite-
rion for this root are also correct then. This expression also applies for
the coning mode approximate root when Imiy = 1/rev, however, so it misses the
1/rev critical region.

Now consider the coning mode root near Im\g = 1/2, that is, to order 1
Ag = -(yo/16) + i/2. The order u? expansion did not work there, so consider
an order u expansion: A = Xg * MAp * . . - and y = Yo * WY; * . .. The
order u term of the characteristic equation is identically zero then, and
the order u2 term is

3 Yo Y1 Y1 Yo Y1 Y
(2on1+ Mg rotKp T)[-z(zxoxl +5 A +g Aot Kp —81)

Yo Yy Yoy’ Yo _
! 2(”“?)(2*”3')] - (53) 200+ 2Kp) Ao+ g - Hp) = O

or

-

Y_l_z_ Y1 (Yo 2 Y02 2 Yo 2
(X1+16)--[—8—<1—6--Kp +T§ \)-8Kp+4Kp)

= -D2 (165)
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The root to order u is then
A= Ag 4 - Lol
= Ap WAy = -T6—+—2—_ iuD (166)

These are exactly the same expressions for D and A as were found for the
%/rev critical region by the perturbation analysis in the rotating frame,
including the periodic coefficients. So the coning mode of this constant
coefficient approximation encounters the %/rev critical region, with the
correct boundary and roots. Now the roots in a critical region have a pius
and minus increment in the damping due to the periodic coefficients, that is,
the roots are not complex conjugates. What is happening to allow the roots of
a constant coefficient approximation to exhibit this critical region behavior
is the following. The low frequency mode roots Ay - i and the conjugate are
also at #!/rev when Imiy = 1/2. Hence, with the coning and low frequency
mode roots there are a total of four roots, two at %/rev and two at -%/rev,
which must participate in this %/rev critical region behavior. Hence, the
critical region behavior can occur while the roots remain as complex conjugate
prairs as is required for constant coefficient equations.

High and Low Frequency Modes

Consider the low freguency and high frequency rotor modes, that is, the
expansion A = Ap + i + uf, + . . .. Then the order u? equation is

Y Y
(Imrg # 1){(121m)\0 - 1)[(2‘11mx0)x2 + Tz (g + Kp) + -QQ Kp]

Yo 2 .
“\1z (Mg 2i+2Kp)(Ag+2Kp)} =0 {(167)

Assume for now that Imig # 1/2 or 1 for the low frequency rotor mode; then

. 2(xg ti+2Kp) (Ao + 2Kp\ ]
T i Y2 [ Yo Yq (Yo (Ao *i+2Kp) (Mg + 2Kp
‘27 16 * 7wy, [“s ( IE*"P)* g KP-\12) T rzimyg - 1 ] ase

The roots to order 2 are then
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[ 2 (1 v2 - L Kp + 4Kp?
l-y ( ) 2 -
2
2, Y v (X)) _L
virg Kp (16) 4
v2-§xp+4nﬁ

2,Y v\ .1
{ \Y +§KP-(I—6_) -z-

(169)

and the conjugates. This result is similar to what was found for the three-
bladed gimballed rotor away from critical regions, so the behavior is familiar
from that discussion. The only change, in fact, is a reversal of the signs of
the * order u? terms, hence, z11 the analysis of that¢ case may be used

here.

The main feature of the behavior is that when u > 0 the real root
intersection of the vy loci - at *1/rev nonrotating - pulls apart. The order
uZ changes in the frequency and damping are in the opposite direction from
what is shown in figure 9(c). The closest approach of the two branches has an

order u width:

8 Y
2{ar|pin = w g 12V (170)

where vy,/16 = Kp + vl s sz is the y for the boundary when u = 0.
Taking the point of closest approach as the real root boundary, it is then

\ g-vZ(-Kp + V2 + Xp2) + Kp

Y . Yo
X Yol .y (171)
16 ~ 16 m
The criterion for divergence stability for these four roots is
2
s (%) Y
(1 + u?) %-Kp > w2l o+ p2 o 2220 2 (172)

g2
() *7

There is this important difference from the case of the three-bladed
gimballed rotor: this solution does not represent the behavior of any real
system, but rather is being considered as an approximation to the rotor flap
dynamics in forward flight. As such, it has then order u? errors in both
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the frequency and damping compared to the correct solution (eq. (24)). Away
from critical regions, the correct solution shows only a small influence of
forward flight anyway, so these errors are probably not large either.

This behavior of the roots n.ar the real root boundary has been seen
twice now: with the three-bladed gimballed rotor, and here for the constant
coefficient approximation to the independent blade dynamics. The origin of
this behavior is the order wu, 1/rev term in the flap damping Mé' That term

gives the 3/rev periodic coefficients for the gimballed rotor which produce
the term in the radicand of ) that gives this behavior. For the constant

. . . . . 15 .
coefficient approximation, the flap damping harmonic M. gives terms cou-

pling the 8;¢ and B;s motion, producing the observed behavior. With inde-
pendent blades observed in the rotating frame, the loci intersect at the real
axis as is characteristic of root loci; observed in the nonrotating frame, the
behavior is shifted by *i so it occurs at *1/rev now, but the blades are
still independent so the root loci still intersect. The root loci of coupled
degrees of freedom do not show that behavior, however; rather they simply pass
close to one another, the minimum separation being a measure of the magnitude
of the coupling. The gimballed rotor couples the blades by requiring that the
rotor move as a whole, in B,. and B;s motion only. The constant coefficient
approximation couples the blades by dropping terms from the equations of
motion describing the independent blades, creating a description of some new
system with coupled degrees of freedom. (How closely the dvnamics of this new
system might represent the rotor with independent blades is what is being
examined here.)

When Imiy = 1/2, that is, when the hover rotating frequency is near
%/rev, the low frequency rotor mode (at -%/rev non. “~ting frequency)
encounters the %/rev critical region. It is not ne sary to go looking for
this solution, because the only way the coning mode uld exhibit the critical
region behavior with a constant coefficient equation is if the low frequency
mode joins it, so the roots may remain complex coniugates even inside the
critical region. The critical region behavior found is the same as that of
the perturbation solution including the periodic coefficients. So the con-
stant coufficient approximation gives the correct behavior of these four roots
near the %/rev critical region. The high frequency rotor mode (at 3/2/rev
nonrotating freque.cy) does not, however, participate in this behavior.
Indeed, the above result (eq. (169)) is still valid for the )y + i root even
when Imig = 1/2; the error in that root is then order .

Now consider the low frequency mode (Ap - i) when Imip = 1; these roots
are at O/rev nonrotating frequency, that is, to order 1 A = -yy/16. The high
frequency mode gives no problems in the order u2 characteristic equation
even when Im\y; = 1, so equation (169) gises the roots there. For the low
frequency mede, however, the order u? characteristic equation (eq. (167)) is
identically zero when ImAy = 1, so it is necessary to go to order u' to
find 1. The order u* characteristic equation is, when Imig = I:
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or
vs 1 [vo\{Yo
o+ oo L(1o) (32 - 2xp) = a0 (173)
where
Y 2
2_10 2
o2 (e k) 2. (Yo 2 v°-g Kp+dKp® Yo)2 Ko 10
16~ “P] 16 6 8 -7 \12] ~"P 1%

Yo \2 Yo (Yo 2 Yo [ Yo 7)? (174)
G b b o]

and the root to order u? is

=-;Y_ 2_.0_(_2._ )]4.‘2
A 16 [1 + v 13 \16 2Kp | + iu<D (175)
This is the critical region behavior again, possible with the constant coeffi-
cient equations because for this mode the nonrotating roots are at the real
axis. The critical region boundary is given by D2 = 0, or the corner u:

(Z_O_ - KP) Ay
16 16
W1,u0" = "EI_T—E{__' (176)

where here
18 S e i W AL') RO
G =-\7 8 *7\z] "1
_ 8 2 _1y2 Yo
=-5 O 1)2 + Kp 1g (177)
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(178)

and yo/16 = Kp + 2 o+ KP2 - 1 for the 1/rev region as usual. The root may
be written then

:-.._.!._ 2§. 2_ 'é._lg_- _..E_z_. -_‘L?_.
S [1+u 5 (v 1)]:116(1 Kp)/(1 " 1 2 (179)

and the boundary on the y - u plane is

%% =2 L2 (180)
0k
16 - P

For Kp = 0, these reduce to y,/16 = 2 -,

€= -5 -2 (181)

Yo 256

3l T (v - 1) + -g——vzwz - 1)? (182)

Cz

and the 1/rev critical region boundary on the .y - u plane becomes

=g
i+

T1=u[--§-(v2- V2.l 132 (2-1)+3§—6—v2(v2-1)2]

(183)

The general behavior of the roots in this 1/rev critical region is
correct but there are order u? errors in both the frequency and damping com-
pared to the exact solution. Cz, the width of the critical region, is exactly
correct. There is an order u? change in the damping (eq. (179)); and the
offset of the critical region, C;, is not correct, leading to an order wu
change in the frequency. These order u? errors correspond to those in the
expression for the roots away from the critical region (eq. (169)). For
v = 1 the damping change goes to zero, and for v = 1 and Kp = 0 the offset
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C; reduces to zero for both the correct solution and for this approximation;
in general, however, there are small errors in the 1/rev critical region
behavior as there were for the roots away from the critical region.

The coning mode (at 1/rev nonrotating frequency) and the high frequency
mode (at 2/rev) do not participate at all in the 1/rev critical region. These
roots are given still by their respective expressions for away from the
critical regions (eqs. (164) and (169)).

Summary

The flapping dynamics of a rotor with three independent blades are
described by a total of six eigenvalues. 1In the rotating frame, there are
three independent equations; then the eigenvalues occur as two triple poles.
In the nonrotating frame, the degrees of freedom and equations of motion are
coupled. There are two eigenvalues at the rotating value for the coning mode,
and four eigenvalues at the rotating values *1/rev for the high and low fre-
quency rotor modes. Thus, if AR 1is the rotating eigenvalue, the ncnrotating
roots are ANR = Ag, AR * i (for N = 3). The total number of eigenvalues in
the nonrotating frame is still six for the three-bladed rotor. The constant
coefficient approximation in the nonrotating frame gives results for all six
eigenvalues at once (in general, for all 2N roots of the rotor flap motion).
This approximation gives the following behavior for the roots.

Away from critical regions (i.e., the hover rctating frequency not near
%/rev or 1/rev) the two coning mode roots are given by equation (164), which
is exactly the result obtained including the periodic coefficients. The four
roots of the low frequency and high frequency modes are given by equa-
tion (169), which has order p2 errors in both the frequency and damping.
The effects of forward flight away from the critical region are, in general,
small, however, so these errors are not too significant.

The four coning and low frequency mode roots encounter the ¥/rev critical
region (at *!s/rev nonrotating frequency), with exactly the same behavior as
the correct solution (to order u at least). The two roots of the high fre-
quency mode (at 3/2/rev) do not participate in this behavior, which means an

order u error.

The four coning and high frequency mode roots do not encounter the 1l/rev
critical region, which means order u2 errors for these roots. The two roots
of the low frequency mode, at the real axis in the nonrotating frame do show
the critical region behavior. There are, however, in general order u2
errors in both the frequency and damping compared to the correct solution,
corresponding to the behavior of the roots of this mode away from the critical
r2gions. The magnitude of these errors is discussed below in terms of the

* - u plane.

Consider the y - u plane for v =1 and Kp = 0 (fig. 2). The constant
coefficient approximation has an identical 1/rev region boundary but only for
the low frequency rotor mode, that is, two out of the six roots. It has the
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same X%/rev region, but only for the coning and low frequency modes (four out
of six). The real root boundary for the coning mode is the same but the
boundary for the high and low frequency modes shows only half the influence of
u. The latter boundary is, in fact, only the point of closest approach of
these two modes at *1/rev nonrotating frequency, not an intersection at all.

For v =1.1and Kp = 0 (fig. 4), the y - u plane of the constant
coefficient approximation has a l/rev region boundary, but only for the low
frequency mode again. The region has the same width for a given u as the
correct solution, but is offset higher. The error in the boundary is roughly
Ay = 4p2, or about Ay = 1 at yu = 0.5 (compared to y, about seven for the
1/rev region with v = 1.1, as shown in fig. 4). As a result, rotors with ¥y
such that the hover frequency is above 1/rev will have a higher ucopner by
this approximation. For example, with case (b) above, v = 1.1 and y = 6, the
constant coefficient approximation gives ucorner = 0.326, compared to the
correct solution of ueorner = 0.286. This error in the 1/rev region
boundary - which corresponds to the frequency error away from the critical
region, and so is a measure of the magnitude of that also - is not negligible,
but is small in terms of the Ay shift of the boundary, or even in terms of
the yucorner, which is more sensitive to the bcundary shifts. The comparisons
of the %/rev region and real root boundaries for this case follow exactly as
for v = 1, discussed above.

The constant coefficient approximation to the rotor flap dynamics in
forward flight produces differential equations that do not actually describe
the real rotor any more, and must always give some erroneous results. As a
representation of the actual rotor dynamics, however, the constant coefficient
approximation (in the nonrotating framel is actually remarkably good. The
influence of forward flight on the roots is given rather well by this approxi-
mation, the primary error being that the roots of the high frequency rotor
modes do not encounter the critical regions. For this case of N = 3, the
1/rev region is seen by the four roots at tl/rev, but not b, the two roots at
+3/2/rev; the 1/rev region is seen by the two roots at the real axis, but not
by the four roots at *1/rev and *2/rev. This behavior is fundamental to the
constant coefficient approximation; the roots from that approximation must
always b~ complex conjugates, so the critical region behavior can cunly be
exhibited by two roots on the real axis (as the 1/rev region her.); or at a
multipls of ’/rev when there are four roots to participate, two at the posi-
tive frequency and two at the negative frequency (as the ¥%/rev region here).
With these restrictions, the constant coefficient approximation picks up the
critical region behavior of the periodic system whenever possible. The con-
stant coefficient approximation in the nonrotating frame is better than in the
votating frame because the transformation to the nonrotating frame shifts the
frequency of the roots to allow such occurrences. At tlie least, these results
suggest that the constant coefficient approximation is adequate for the low
frequency dynamics of a rotor as for helicopter stability and control
investigations.
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Four-bladed Rotor

Comparing the constant coefficient approximation of equations (156) and
(157) for the N = 3 and N = 4 cases, it follows that the four-bladed rotor
only adds the B, degree of freedom and equation which are completely
decoupled for the constant coefficient approximation. So,to equation (161)
must be added the equation

§2 + % é.z + [\)2 + (1 + uz) %KP]BZ =0 (184)

for the four-bladed rotor. The roots for this mode are

2
A=-i%tiﬂ2+(l+u2)%l(p-(ll6-) (185)

This is the same as the constant coefficient approximation in the rotating
frame which is not very good. All the critical regions are missed and there
are even order u? errors away from the critical region. The solution for
the other six roots is the same as for the N = 3 case.

Five or More Blades

As the number of blades increases, more and more modes are added to the
nonrotating representation of the rotor. For example, N = 5 has degrees of
freedom B8y, Bic, B1s, and

ZIN

Bac = EB(m) cos 2yp
m

Z:B(m) sin 2y

m

Bas =

PALS)

with corresponding roots ANR = AR * 2i1. Consequently, more of the low fre-
quency modes will be able to pick up the critical region behavior in the con-
stant coefficient approximation. The highest frequency mondes always do not
encounter the critical regions, of course, so the constant coefficient approxi-
mation can never give completely correct behavior. This effect of increasing
N parallels the effect on the differential equations. Increasing N tends
to sweep the periodic coefficients from the lower frequency modes; there are
always periodic coefficients present in the degrees of freedom and equations
of the high frequency modes, however.
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TRANSFER FUNCTIONS

The experimental determination of the eigenvalues, especially the small
increments (order u or even u2) found here, in the harsh aerodynamic envi-
ronment of the helicopter in forward flight, is a difficult task to accomplish
with accuracy. A more direct measurement - hence, fundamentally more accu-
rate - is the transfer function, that is, the response of the blade flap
motion due to sinusoidal excitation.

Consider the transfer function of the flap response to blade pitch
control, particularly the influence of the periodic coefficients in forward
flight, which has led to the special behavior of the eigenvalues. The equa-
tion of motion for an independent blade excited by pitch control inputs only,
in the rotating frame, is

Gl sin o)
B+ (F+gwsiny)e
+ {v2+%u cos y + %uz sin le*'Kp[% (1+u2)+%u sin w-%uz cGs Z\p]}s

= [% (1 +u2) +% u sin ¢ - g— u? cos zw]e (186)

The trarsfer function is defined as the response to sinusoidal input
8 = Belwy where B 1is a complex constant. Taking only the real parts of
both the input and the output is implied. With a constant coefficient differ-
ential equation, the output will also be a sinusoid at frequency w, that is,
B = BelWV, The differential equation relates the output B to the input ¥
by a single complex function H(w), which is the transfer function:

= H(w) (187)

of| |

With a periodic coefficient difforential equation, the response to 6 at
frequency w 1is not just B8 at frequency w. The sinusoidal input at w is
multiplied by the coefficients which have terms that are also sinusoidal now
with frequencies 1l/rev, 2/rev, etc. (2, 22, . . .). The product of two sinus-
oidal functions is a sum of sinusoids at the sum and difference of the fre-
quencies. It “ollows then that for a periodic coefficient system an input at
frequency w leads to an ocutput with terms at frequencies w, w %l/rev,

w *2/rev, etc. The output is then a sum of the form
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§T= Ho(m)eiww + H+1(w)ei(w+1)w g H-l(w)ei(w'l)w
¢ Hop(0)el 02V Ly o yelle-dv (188)

where H,, H4p, Hss, . . . are all the transfer functions ot the system.

Notice this may be written as B/F = H(w, y)elwd, where Hy, Hyy, Hyp, etc.
are the harmonics of a Fourier series representation of a function H(w, ¥),
which is periodic in ¢ (H(w, ) is complex, however, so H,; and H.p are not
conjugates). Equation (188 is a general 1result for periodic coefficient
differential equations: the dynamic behavior is described by not a single
transfer function, but rather a series of transfer functions. There is the
direct response H,, the output at the same frequency as the input; and there
are also now sideband responses Hiy, output at the input frequency #n/rev.
Since for the hover limit u = 0 the present differential equation reduces to
constant coefficients, all the transfer functions but Hgy must be zero then.
It will be found, in fact, that Hs, are order u".

Analysis

Assuvme the input is 6 = felw¥, It is possible to simply substitute into
equation (186) the expansior for £ as in equation (188), collect like har-
monics, and thus solve for the transfer functions. Following the rest of the
present investigation, however, an expansion in u will be used which makes
the analysis more orderly. Expand the output as a series in yu:

8 = Bg + uBy + u2By + . . .. Since it is known that the output has only time
behavior like el(w*n)¥  there are no other time scales but ¢ in this prob-
lem. This means there is no critical region behavior in this problem that is
a feature of the eigenvalues only. The critical region behavior is r>placed
here by the sideband transfer functions which will be shown to carry equiva-
lent information about the system dynamics. It is therefore also not
necessary to expand y as a seric, in .

To order 1 the differential equation is

Bo + % 8o+ (V2 + LKp)Bg = 3o (189)

So 6 = Bel® gives gy = Bge

8, %
T? o) (190)
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Aw) = -w? + % iw + v2 o+ Kp% (191)

The order 1 solution is the hover 1imit as usual; here it is the hover trans- ‘5
fer function for the response of blade flapping to pitch input. The transfer
function has the usual form for a second order system iresponse, in this case
a heavily damped system with natural frequency wp“ = vZ + (v/8)Kp. Notice
that A(i)) is the hover characteristic equation. -
The order p differential equation is ud
i X A v (o2sKe YYg, = X sin ¢6-[YL si Y Y o
By+g Br+ (V2 Kp 8)81 % sin ye [8 sin w60+(3 cos ¢ +Kp x sin w)Bo]
ﬁ = L [-216- (u+1- 2inp)Bylet (W*1IV
+ 5 (2084 (w-1- 2iKp)Bet (w- IV (192)
¢ 2
Hence, the solution is By = §}+e1(w+1)w + E&_el(w'l)w with the transfer
functions
‘ Yy [y 2 _ 2
f B L - +2i -
| Bis 12 [- § s2i? - v )] (193)
' l - Alw t 1)a(w)
I
;
; The order u response is then just the w * 1/rev sideband functions. The
forcing terms, the right-hand side of equation (192), are the same terms which
‘ gave the order u, %/rev critical region for the eigenvalues. That is, near
. L/rev these terms contributed to the order u secular equation. Hence, the
s order u sideband transfer functions at w % 1/rev constitute behavior of the
\ system equivalent to the l/rev critical region of the eigenvalues.
i The order u? differential equation is
: oy , |
Bz + 3-82 + (vz *3 Kp)ez = %-(1 - cos 2y)0 j
é? - [%-sin wél + (% cos v + Kp % sin w)el
& Y o Y _oya Y
, ¢ (Lsin 2+ Kp § - Kp § cos 2¢) 8o (194) L
¢
; 4
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Substituting for 6, 8,5, and By, the solution is

By = —zelww . §2+el(w+2)w . -B—z-ei(w-z)w (195)
with
- Y
B (§)
Aw) =2 = Y x ey
g 8 A (w)
y2 - Zil(p)4i[v -2 e (T zlw)]
*(12) A5 @)
2 (w - 2iKp)4i(w? - v2)
* (12) A (@) (196)
where
2
Br(w) = 8(w + DA = 1) = [AGw) - 1]2 + (240 + §) (197)
Notice that A;(i)) is just tne characteristic equation for the 8;¢/8;s
hover roots. The direct response to order u2 is then
By + ulB. 2 (4iw + 8Kp) (w2 - v2)
Bo + w7Ba [% (@) » 02 (L) ks
1 {-.2 » %-iw + v e (1 +4d % Kp
s (e G B0 - (F e 2]
tu (12) 8, (198)

So the order p2 response contributes to the direct transfer function much as
it does to the eigenvalues away from the critical regions. The order u?
correction for the mean of Mg is recognizable as usual, and there are other
order u2 effects due to the periodic coefficients. The w ¢ 2/rev sideband
tr-n.fer functions are
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2 (utZ-ZiKp)[- -g—t Zi(wz-\ﬂ)]
5 w2y |15 A (w) *(12) AwAw £ 1)

(199)

Sumnary

The :ransfer functions describing the response of the blade flap motion
to pitch excitation are

By + uZB, )
¥, = L2
0
g
Hy < w5 (200)
Bys
Hyp = p2 22
*2 ) ‘

By measuring the response to a sinusoidal input, it is then possible to verify

the equation representing the flap dynamics. Specifically, it is possible to

verify the periodic coefficients which produce the critical region behavior of

' the eigenvalues. There is not, however, any critical region behavior for the
transfer functions, that is, specific ranges of the parameters where there is
more critical behavior of the response. That is replaced by the rideband
transfer functions. Hencc, the transfer function measurement does not provide
experimental demonstration of the critical region Lehavior, although it does
equivalent informati~n, verifying the equation which produces the critical
region for the eigenvaiues.

A Point About Experimental Technique

Since the response of a periodic system to input at frequency w is
output at w * n/rev, for all integers n (although the magnitude of the
response decreases with n), it follows that the random excitation technique
for measuring the transfer function of a constant coefficient system is not

{ directly applicable to periodic coefficient systems. A random input has all

. frequencies at once, hence, the output is also composed of all frequencies.
e For constant coefficient systems the knowledge that the response at w came

P only from the input at ® can be used to determine the transfer function when
the input is random - the entire function at once, in fact. With a perisdic
coefficient system, iiowever, the ocutput at « has contributions from inputs
at w * n/rev for all n, so not enough irformation is available to determine
the transfer function.
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An input at a single frequency w must be used then and the output at
all harmonics w * n/rev measured; this ta<k is performed for the range of u
required. This technique is slower than with the random excitation; in addi-
tion, the noise filtering feature of the random input is lost, that is,
accuracy of the measurements is lost.

The problem is that there is not a single transfer function to measure ‘E
but rather several. For example, the rotor flap response up to u = 0.5 or so
would require the measurement of Hy, H+j, and Hsp at least. It is probably
possible to extend the random excitation techniques to periodic systems. It i
would be necessary, however, to use a number of inputs with independent
spectra so that enuvugh independent measurements are made at each frequency to
determine the required number of transfer functions. In any case, the peri-
odic system will requ.re more experimental effort than the constant
coefficient system.

[l

Nonrotating Response

For the dynamics of the helicopter as a whole, it is the response of the
rotor in the nonrotating frame that is of interest, that is, the response of
the By, B¢, Bys, etc. degrees of freecom. Similarly, the inputs usually
available Jor the rotor are collective and cyclic pitch control: 6gp, 8¢
415. He: s, the transfer functions in the nonrotating frame may be examii.ed,
10 #a.ditsion to the rotating response given above. The analysis proceeds much

tave. It is straightforward since there are no critical regions to be
cuncerned with or any other singular behavior; it is convenient to use vectors
of the input and output variables and matrices of the transfer functions (
due to §§. The analysis and results are not very illuminating, however,
because of their complexity.

DISCUSSION OF PREVIOUS WORK

Horvay (ref. 1) considered the flap dynamics of a rotor with v =1,
Kp = 0, and no reverse flow eff~-~ts. By the substitution

- X X
16 L 12 M cos v 3

B = ye ’

'
~
*

he transformed the flap equation to the szandavd form of Hill's equation:

y+ f(W)y =0

where f is a periodic function. This equation he solved by the infinite
determinant method of classical theory. The solution producad numerical
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results presented as constant ReA 1lines on the vy - u plane. The
boundaries found were essentially those given in figure 7 although he did not
investigate small enough y to find the 1/rev region. Horvay used the nota-
tion n = y/8, since this is the coefficient of tiie flap damping in hover.
Then, in hover and outside the critical regions, Rer = -y/16 = -n/2. Hence,
he introduced the "apparent damping coefficient" n,,, = -2Rex. Then

napp/n = -ReA/(y/16) takes the values 1 outside the critical regions, 1 to O
in the stable portious of the critical regions, and less than 0 in the
unstable portions of the critical regions. The use of the notation napp/n
and the parameter n, for Red is found in much of the literature on rotor
flap stability. Horvay found approximate solutions at high u (to wu = 8) for
several equations which are not true descriptions of the flap dynamics but do
illustrate some of the high 1 behavior of the real rotor.

Horvay and Yuan (ref. Z) considered blade flap stability for the cas: of
v = 1 and no reverse flow but including Kp = 0. The roots were found ‘rom
the transient solution for B, using the results of Floquet theory (as out-
lined in Appendix A here). Much of the literature uses this approach, the
real differences being the method used ic find the transient solution for B.
Horvay and Yuan used the ripple method to integrate the differential equation.
They presented the numerical results on the y - y plane for v =1 and
Kp = 0, -/3/1Z, and ¥3/4 (these values of Kp were chosen because they place
exactly at vy/8 = V3 the %/rev region, the real root, and the 1/rev - 2gion
boundaries, respectively, when u = 0). A large azimuth interval was used in
the ripple method but the results compare fairly well with the solution of
Horvay (ref. 1), at least at small .

Parkus (ref. 3) considered the flap stability for v = 1, no reverse flow
but Kp # 0 (with the notation k = -Kp). He found the roots from the Floquet
result using an expansion of B as a series in u to find the transient
solution. The expansion is the same as is used here away from the critical
regions since the miltiple time scales and expansion of y are not needed
there. Parkus left his result in the form of a quadratic equation “»r

o = ez“[A+(Y/16)]; since it is only an order p2 solution, howeves it is
possible to solve explicitly for A. The result is exactly the saw¢ uas
obtained here for the roots away from the critical regions (eq. (24), with

v = 1). Parkus did not recognize, however, that this solution is not valid
for ImA near 1/rev or %/rev. The assumption that the B, in the expansion
of B are all the same order is violated near the critical regions. Parkus
calculated the roots for varying u, for vy = 12 and 14; the behavior of the
roots looks like that in critical regions but really the expression for the
roots away from the critical regions is breaking down as the roots approach
the Y/rev region. When Imiy 1is near %, the order p2  term in the radicand
of X (eq. (24) here) is large, so for large enough u the radicand is
negative. The result is two real 1oots and an order u? effect which is far
from - 1e correct %/rev region behavior.

Gessow and Crim (ref. 19) considered the flap stability at high u
numerically integrating the equations of motion to find the transient behavior
of B. Reverse flow was included, as well as the effects of stall, compressi-
bility, and large angles. They found the flap motion to be stable at u =1
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for y=2.4t014.9, at 1 = 2.2 for y = 2.4 to 7.1, and at u = 3 for
y = 0.6 to 2.4. The motion was unstable at yu = 3 for vy = 14.9.

Shulman (ref. 4) considered the flap stability for v = 1, Kp = 6, and no
reverse flow. He added, however, a second degree of freedom, the first
elastic flapwise bending mode of the articulated blade. His principal solu-
tion method was simply to numerically integrate the equation of motion. He
found a significant effect of the second degree of freedom for high advance
ratio, u = 1.0 say, but small influence for u wup to 0.5. The equations were
solved for u =1 and 1.2, but with the neglect of reverse flow the true flap
dynamics are no longer represented at that u. His conclusion that the flap
instability occurs at u = 1.5 to 1.8 is not correct then; but the importance
of the second degree of freedom at high u 1is probably qualitatively correct.

Perisho (ref. 5) considered the stability of the flap and pitch dynamics
of the blade at high p, for an articulated rotor, Kp # 0, and including
reverse flow aerodynamics. He solved the equations by numerical integration
for the case v = 1.05, y = 5, and a pitch natural frequency of 10/rev. For
just the rigid flap degree of freedom, he found the instability boundary at
y =2.2with Kp =0, and at u = 2.45 with Kp = 2, in the 1/rev region for
both cases. Adding the torsion degree of freedom reduced the u for
irstability to p = 1.8 for Kp = 0; and to u = 1.65 for Kp = 2, in the
%/rev region now. Adding flapwise bending, that is, three degrees of freedom,
reduced the speed for instability still farther to u = 1.43 for Kp = 2. The
reduction in the stability at high u due to the torsion degree of freedom
appeared to be largely a torsion divergence in the reverse flow region.

Shutler and Jones (ref. €¢) considered the flap stability for v = 1 and
Kp = 0, with no reverse flow. They solved for the eigenvalues and for 3 by
a perturbation solution based on the Floquet theory result that the solution
of a periodic coefficient differential equation may be written in the form

g = Cre’Vu; () + Cpet2Vu, (v)

where the eigenvectors uj; and up are periodic {Appendix A). The substitu-
tion B = erPu is made into the flap equation and then A and u expanded as
series in u. The requirement that all the functions in the expansion of
u(y) must be periodic is equivalent to the requirement in the method of multi-
ple time scales that the successive functions grow no faster than the earlier
ones (the order 1 term of wu(y) is the hover limit, so it is constant; then
requiring successive terms in the expansion grow no faster means they can at
most be periodic); the result has the same secular terms as obtained here.
This is basically the method used by Shutler and Jones, although the Jetails
differed considerably. To treat the critical regions it is necessary to
quantify the requirement that the frequency be near a multiple of %/rev. The
present investigation used an expansion of y to do this, while Shucler and
Jones essentially expanded Imh itself (their eq. (25); with the present
notation for A). So contrary to their statement, this expansion {eq. (25))
does have physical significance, namely, what 'close'" to a critical region
means. Similarly, their parameter o also has physical significance: it

83

et

b



gives contours of constant Re) in the critical regions; for example, the
critical region boundary is such a contour. They found the eigenvalues and B
for the cz es of the %/rev region, the 1/rev region, and away from the criti-
cal regior to order p? everywhere, including in the %/rev region. Their
results m + be shown to be equivalent to those obtained here, for v = 1 and
Kp = 0; except that here the ’i/rev region is only carried to order u. Their
result for the %/rev region boundary to order p? has been given above

(eq. (55a)) and illustrated in figure 7. They did not, however, take
advantage of th~ fact they had a perturbation solution to put together
explicit analytic expressions for the eigenvalues.

Lowis (ref. 7) cur-sidered the flap stability for v = 1 and Kp = 0, at
high w particularly, fi:st without and then with reverse flow effects. He
solved for the roots by the results of Floquet theory, after numerically inte-
grating the equation to find 8. Without reverse flow he found an instability
at about p = 1.42 in the 1l/rev region. With reverse flow, the instability
occurred at about u = 2.3, stil! in the 1/rev region. The representation of
the reverse flow aerodynamics used was only approximately correct, however: he
did not account for the azimuth range where the blade is partly in normal flow
and partly in reverse flow. This model has the correct limit for very large
p but it is not good at ali below p = 1. The behavior of the solution
around u = 2, that is, including the flap instability, is probably correct
but neither of th2 solutions (without and with reverse flow) he obtained is
good in the range u = 0.5 to u = 1.5 or so.

Wilde, Bramwell, and Summerscales (ref. 20) considered flap stability at
Ligh u, including the effects of reverse flow, and presenting results mainly
for v =1 and Kn = 0. They considered a teetering rotor also. The solution
was obtained by use of an analog computer. They found a flapping instability
at about u = 2.25 for v = 6. The teetering rotor was stable to u = 5 at

least.

Sissingh (ref. 8) considered the flap stability at high u, including
v>1, Kp # 0, and reverse flow (with the notation P = v, C; = -Kp; and only
Kp = 0 was used for the results). The aerodynamic coefficients of reverse
flow were derived and discussed. The solution of the equation of motion was
obtained by use of an analog romputer. The results were presented as stabil-
ity boundaries fur several w, on the y - v plane, with the emphasis on
quite large v, typical of a slowed or stopping rotor. For v =1, he found
u = 2.2 for instability at y = 8 (higher for other values of Y).

Stammers (ref. 9) considered the influence of forward flight on the
flutter of the helicopter rotor blade. He found a perturbation soluticn by
methods similar to those of Shutler and Jones (ref. 6) r:ther than the methods
used in the present work.

Hall (ref. 10) investigated the dynamics of the flap/lag/torsion motion
of the blade. He used Floquet theory to obtain the roots from a numerical
integration of the equations over one period. He discussed Floquet theory and
ite results for a multi-degree of freedom system. He also presented results
1or a single degree of freedom, that is, just rigid flap.
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Sissingh and Kuczynski (ref. 11) extended the earlier work of Sissingh
(ref. 8) to include the torsion degree of freedum; the emphasis again was on
the results for very high wu. They showed a quite significant effect of
torsion on the blade stability reducing the u for instability considerably.
Fer example, with y = 6 the u for instability was reduced to about 1.7 for
a torsion frequency of 8/rev and to about u = 1.35 for a frequency of 5/rev. k
These boundaries were just a little below those for torsion only; the effect
was largely due to torsional divergence in the reverse flow region where there
is a negative aerodynamic spring and reduced acrodynamic damping on the pitch
mution. Their results compared well with those of Perisho (ref. 5). -

Peters and Hohenemser (ref. 12) considered the flap stability including
v > 1, Kp # 0, and reverse flow aerodynamics. They used a continuous repre-
sentation of the reverse flow aerodynamic coefficients as obtained by Sissingh
(ref. 8). They solved for the roots by integrating over one period and then -
using Floquet theory. Their solution compared well with the analog computer
solution of reference 8. They presented the numerical results on the y - u
plane for v =1 and Kp = 0, 0.1, -0.1, out to u = 2.5. They found approxi-
mately u = 2.3 for the flap instability in the 1/rev region (at y = 9,
higher for other values of y); Kp > 0 increased the u for instabilaty.
There were possibly some numerical problems with the 1/rev boundary at low
(below 0.5), since the boundaries appear more like order u than the correct 2
order u? behavior (their fig. 3). In addition, the u = 0 point of the
1/rev region really must shift for Kp # 0 and not remain always at y = 0 as
shown (their figs. 4 and 5).

Hohenemser and Yi.it (ref. 13) investigated the flap dynamics using the
nonrotating degrees oF {reedom and equations including the periodic coeffi-
cients in forward flight. They gave the equations for the case of N = 4.
They solved for the r>ots by the methods of reference 12. They discussed the
constant coefficient approximation to the nonrotating equations in forward
flight but only in the context c¢f tip path plane *+ilt feedback control, how-
ever (at y = 0.4 with N =3, ana u = 0.8 with N = 4) They found the con-
stant c(oefficient approximation was not bad at low gain, especially for the
low frequency modes but for high gain it could be unconservative,

Johnson (ref. 14) considered rotor flap stability including v > 1,
Kp # 0, and reverse flow. He obtained perturbation solutions for the cases of
small and large p and small and large ~v. The small p solution formed the
basis for the analysis of the individual blade case in the present work. This
report was summarized in reference 15,and reference 17 presented a synoptic of
the small u results.

MERELLD, A

Tong (ref. 16) considered the blade flap/lag dynamics. He obtained a
solution by perturbation techniques to handle the nonlinear features of this
problem (i.e., limit cycle instabilities), as well as the influence of forward

f1' ' ght.

\

Biggers (ref. 18) considered the flap dynamics for Kp = 0 and no
reverse flow but including v > 1. He constructed u root loci and y - u

n.anes for several cases using a numerical calculation of the exact
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eigenvalues by means of Floquet theory. He presented the nonrotating
equations of motion including the periodic coefficients in forward flight for
N =3 and N = 4. Then, he considered the constant coefficient approximation
in the nonrotating frame, solving the characteristic equation for the roots of
the system numerically and comparing this constant coefficient approximation
with the exact results {Floquet theory). He examined several cases out to

¢ = 0.5. The results of this comparison of the exact and constant coefficient
e.genvalues (both obtained by numerical techniques) are in agreement with the
results of the comparison given here (of corresponding perturbation solutions).

CONCLUSIONS

This report has considered the influence of forward flight on the
flapping stability of several helicopter rotor configurations. The eigen-
values of the motion have been obtained by a perturbation technique which
gives analytic expressions for tle roots. Comparison between numerical solu-
tions for the exact roots and the present perturbation solutions indicates
that the latter are quantitatively accurate to about u = 0.5. (An exception
is near the %/rev region, where the perturbation solution was carried to only
order u. It should evidently be extended to order u? as was the rest of
the solution.) In general, for this range of p, the flap motion retain: the
high aerodynamic damping of hover and so remains very stable in forward flight.
There exist, however, critical regions due to the periodic coefficients which
are encountered if the hover root frequency is too near a multiple of %/rev.
The influence of the critical regions increases with u as the periodic
coefficients increase. For the usual values of v, Kp, and vy, the critical
regions of interest are the %/rev and the 1/rev regions. In a critical region
there is a plus and minus increment in the real part of the root from the
hover value while the frequency remains fixed at a multiple of %/rev. Hence,
there is a decrement in the stability of the system when & critical region is
encountered. However, the damping change is only order u 1in the %/rev
region, and order u? in the 1/rev region, so the stabiiity decrease is small
and the flap motion remains highly damped in forward flight.

For u order 2 or so, that is, beyond the range ot validity of the
perturbation solutions obtained here, there can occur a sufficient stability
degradation in a critical region (usually in the 1/rev region) so that a flan
instability is encountered.

These conclusions about the flap stability may generally be found in the
existing literature on this problem. What the present work adds is explicit
analytic expressions for the eigenvalues of the flap motion, including the
periodic coefficient influence in forward flight. Also, the behavior of
cantilever (v >1), teetering, and gimball~sd rotor configurations is examined
in addition to that of an independent, articulated blade.

The transfer function of the flap response to blade pitch has been

considered as an alternative to the eigenvalues for describing the dynamic
characteristics of the system. The transfer function indeed is found to
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represent equivalent information about the dynamics, but with quite different
behavior. The critical region behavior of the eigenvalues is replaced by
sideband transfer functions (response at frequency w * nQ to input at
frequency w).

The constant coefficient approximation to the flap equations of motion in
the nonrotating frame was investigated and the eigenvalues compared with the
solutions including the periodic coefficients. Such an approximation cannot
be entirely correct. of course, but it is remarkably good, especially for the
lower frequency nonrotating modes of the rotor. This implies that for certain
problems - such as the low frequency dynamics of the rotor involving the heli-
copter body motions - the constant coefficient approximation is an adequate
representation of the system. The possibility of using the constant coeffi-
cient approximation involves a considerable roduction in the effort required
to analyze and understand the rotor dynamics. It is suggested, therefore,
that the first step in an investigation involving helicopter rotor forward
flight dynamics should be to check the vaiidity of the constant coefficient
approximation by comparing with an exact solution (obtained by numerical tech-
niques probably) for the particular problem. The periodic coefficients (in
the nonrotating frame) may not even be needed. If they are required, then the
methnds of perturbation theory are very useful in examining the fundamental
behavior.
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APPENDIX A
PERIODIC SYSTEMS

The forward flight of the helicopter introduces periodic coefficients
into the differential equations describing the flap motion due to the periodic
variation of the free-stream velocity seen by the rotating blade. For large
enough u the periodic aerodynamic forces radically influence the behavior of
the root loci, and the analysis techniques required to find the eigenvalues.

The root loci of a constant coefficient system characteristically exhibit
behavior in which two roots start as complex conjugates, meet at the real axis,
and then proceed in opposite directions along the real axis. The existence of
periodic coefficients in the differential cquations describing the motion
generalizes this behavior so that it can occur at any frequency that is a
multiple of ’%/rev, that is, at ImA = n/rev or n + %/rev where n 1is an
integer, not just at O/rev (the real axis). The property cf the solution that
allows this behavior is the fact the eigenvectors are themselves periodic
(instead of constant as for a constant coefficient system; see the mathematics
below). The analysis which demonstrates that periodic systems show this
behavior is called Floquet theory.

Thus, the following behavior of root loci is characteristic of periodic
systems (refer to fig. 10). If the parameter being varied, for example, the
advance ratio p in the present problem, is such that at p = 0 the system is
not periodic, then the roots start out as complex conjugates (point A on the
loci in fig. 10). As u increases, the periodic forces increase, and the
roots move toward n/rev (or n + %/rev) frequency, remaining complex conju-
gates. At some critical u the loci reach Imd» = n/rev (point B on fig. 10),
and then for still larger u the frequency remains fixed at n/rev while the
real pait of one root is decreased and that of the other is increased. The
root being destabiiized may cross into the right* half plane for some
(point C on fig. 10), indicczting that the system has become unstable due to
the influence of the periodic coefficients.

A general system of differential equations with periodic coefficients may
be reduced to a set of first-order equations, and may therefore be written
(in matrix notation) as

X = AX (A1)
where X is the state vector of the system and A(t) is a periodic matrix of

coefficients: A(t + T) = A(t). It may be shown that the solution to this
differential equation can be obtained in the form

(1) = Laq, 0e'i%; (1) (A2)
~ 9.

88

FUN

L

S% e

L
v oo
e

v

i o
-

L



-~

The Aj are the eigenvalues; the eigenvectors Ei are periodic:

ﬁi(t +T) = ﬁi(t); and the numbers q.(0) are constants obtained from the
initial conditions. The theory that Shows this is called rloquet theory. The
solution in this form is a direct extension of the normal solutio» for a con-
stant coefficient differential equation which is characterized by constant
eigenvectors (ﬁi independent of time).

The eigenvalues Aij; may be obtained by the following procedure. The
equation

$ = A¢ (A3)

where ¢(t) is a matrix, is integrated over one period, from t = 0 to

t = T, with the initial conditions ¢(0) = I (the unit matrix). Then, if Aci
are eigenvalues of the matrix C = ¢(T), the roots X; are given by

Ag = eAT or A = (In Ac)/T. While the roots A.. (as eigenvalues of a real
matrix C) must appear as real numbers or complex conjugate pairs, the eigen-
values A; are under no such restriction, leading to the behavior of the root
loci as described above.

For a single degree of freedom, second-order system, let xp be the
solution obtained from integrating the equation with the initial conditions

x(0) = 1, x(0) = 0; and let xp be the solution with initial conditions
x(0) = 0, x(0) = 1. Then, the roots Ac are given by the quadratic equation:
A2 - [Xp(T) + xp(MIre + [Xp(Mxp(T) - xg(Mip(T)] = 0 (A4)
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APPENDIX B
METHOD OF MULTIPLE TIME SCALES

This appendix describes briefly the perturbation technique known as the
method of multiple time scales. It should be used in parallel with the analy-
sis of the flap equation, for many of the steps are more clearly expressed in
the context of a specific example. More details of the method, and examples
of its application may be found in reference 21 (and also ref. 14).

Fundamental to perturbation methods is the existence of a small parameter,
here the advance ratio yu; and for the solution of periodic coefficient differ-
ential equations, that the periodic terms be functions of u such that the
equations reduce to constant coefficients when = 0. For a study of the
stability of a system, a solution is required that is uniformly valid over
long time periods, so the long time behavior may be assessed. This leads to
the use of the method of multiple time scales. Define a series of time scales
¥y = uMy. The time scales Yn are all assumed to be of the same order. Then
for ¢; = wy the actual time ¢ must be order p-l, that is, very large com-
pared to the basic scale Yy = y. The behavior of the solution over several
time scales Y, will be investigated, each implying successively longer time
behavior. The derivative with respect to time becomes then

3 3 3 2 3
W Ay

So the assumption of the time scales is equivalent to an expansion of d/dy
as a series in wu.

Next the dependent variable is also expanded as a series in u:

g = BQ(‘J)O, ‘1’1; Wz, . . ') + usl(WO) '1’1: s . ') + .

The B, now depend on all the time scales y,. The B, are all assumed to
be of the same order, for all the long time scale behavior. This requirement
is critical tc obtaining the solution; it leads, for certain values of the
free parameters, to critical regions in which there is a reduction in the
stability of the system. In order to investigate the influence of the free
parameters, they aiso are expanded as series in u. In this case, for the
Lock number vy have

R L ST S P
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where the Y, are all of the same order. For certain critical values of

Y, - that is, when y 1is order u ov¢ order 2 from certain critical
vglues - there will occur a stability degradation due to the influence cf the
periodic coefficients.

So now B, d/dy, and the free parameters are all expanded as series in .
These are substituted into the differential equation, and then all terms of
like order in p are collected and separately set to zero. Thus, differ-
ential equations are obtained for order 1, u, w2, . . ., yM, . . .. With the
expansion of d/dy, that is, the use of multiple time scales, these equations
are now partial differential equations for B8, as functions of y,. The
order u" equation has the following form: it may be written as a differ-
ential equation for £,(¥p), forced by the lower order solutions. That is, on
the right-hand side there are Bn_y, Bp.5, . . ., Bp and their derivatives
with respect to ¥n, ¥pn-y, - . ., Yg. The set of partial differential equa-
tions is solved progressively, beginning with the lowest order equation
(order 1), then order u, etc.

It is the characteristic of this expansion in u that the uRl order
equations, written as ordinary differential equations for B8n(¥g), all have
the same humogeneous solution. Since the equation for Bph(yg) is forced by
the lower order solutions B8p.;, . . ., Bg, it follows then that when the
known solutions for B,.y, . . ., By are substituted, the equation for B8,
will be forced by its own homogeneous solution. This would give rise to
solutions for B, of the form ¢y times its homogeneous solution, that is,
solutions for B, of order YgB,.;, - . -, ¥oBo. Then Bn/Bn-y, . - ., By/Bp
would be order g, that is, would become arbitrarily large if ¢ is large
enough. This violates the assumption that B8, 1is of the same order as
Ba-1» - - +» Bg. The only way such a solution may be avoided is if the coef-
ficient of the homogeneous solution on the right-hand side of the ul order
equation for B,(yg) is itself set to zero. This coefficient of the homogene-
ous solution forcing the equation for B,(yg) is called the secular term. The
secular term is set to zero so that the solution for 8, will be uniformly
valid for all time, that is, for large yq.

Now the right-hand side of the B8, equation itself involves derivatives
of Bp-y, . . ., Bp with respect to the time scales ¢p, . . ., Yg. At this
stage in the analysis, considering the un order equation, scme of the solu-
tion for B is known already. What is not known is the behavior of 8.
with respect to ¢, ¥, . . ., the behavior of B8;., with respect to
Y2, . . ., and so on down to B with resnmect to ¢,. Hence, these combina-
tions of the dependent and independent variables remain on the right-hand side
of the B8,(¥;) equation when the known snlution is substituted. Specifically,
thece combinations will be in the coefficients of the homogeneous solution,
that is, in the secular term. Then, setting the secular term to zero results
in a differential equation, which may be written as an equation for Bn-l(wl).
forced on the right-hand side by the lower order solutions. This equation
will also be forced by its own homogeneous solution, and so its secular term
must be set to zero in order to maintain the uniform validity of B,.; over
the y, time scale. The result is an equation for B8,_,(¥3); this process
is continued down to an equation for B8g(Yp).
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So the order " equation produces a set of differential equations for
Bn(¥o), Bpoy(¥1), Bn_p(¥2), . - ., Bo(¥p). This set of equations is then
solved, for the behavior of Bp with respect to Yy, B,.; with respect to
Y1, and so on down to By with respect to y,, thus completing the soiution
to order uM. The analysis then proceeds to the order i+l equation. For
the stability of the system, it is the behavior of 87 with respect to yp
that is of interest since that giv-s the eigenvalue to order u". The nesting
behavior of the differential equations makes each successive order solution
more involved but the basic procedure remains the same.
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APPENDIX C
SOLUTION OF THE SECULAR EQUATION

The application of the method of multiple time scales to periodic
coefficient differential equations results in secular equations of the form

’2'37 +(a+id)g+ (b+ ic)B =0 (C1)

where B8 1is a complex quantity, and the constants a, b, ¢, and d are real.
Writing

D2 = d2 - (b2 + ¢?) =d> - |b + ic|? (€2)
D = /p?| (c3)

it may be verified that the solution of this equation is, for D2 > 0:
8 = e'“’(A[d -D+i(b+ic)]etPY e R[a+D+i(b+ ic)]e'i”“’} (C4)

where A 1is a complex constant; for p? = 0:

B = e'aw(A{[d + i(b + ic)]y + i} + B[d + i(b + ic)]) (CS)
where A an1 B are rea! constants;and for D2 < O:

B = e'a"’lA(d +iD+i(b+ic)]ePY +B[d-iD+i(b+ ic)]e'w’ (C6)

where A and B are real constants. The limiting case b =c¢c = 0 gives
D = d, so the solution is

g+ Ae” v )

vhere A is & -omplex ccunstant.

The regio.. of decreased stability - the <ritical region - is given by
D2 < 0. The boundary of the critical regior is [? = 0. The behavior of the
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solution of this equation when b or ¢ # 0 _is that described foi periodic
systems; indeed it will be found that the B term comcs from the periedic
coefficients.
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Figure 1.- Root loci for varying u, based on the perturbation ~olution. The
cases shown are (a) v =1and y = 10, (b) v = 1.1 and y = 6, and () v=1

and vy = 6 (Kp = 0 for all three cases).
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v = 1 and Kp = 0 (bosed on the perturbation solution).
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Figure 5.- Critical region and real root boundaries on the y - u plane for
v = 1.15 and Kp = 0 (based on the perturbation solution).
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Figure 6.- Critical region and real root boundaries on the y - u plane for
v = 1 and Kp = 0.1 (based on the perturbation solution).
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Figure 9.- Behavior of the y root locus of the three-bladed gimballed rotor,
near the two real root boundary. The three cases are discussed in the

text.
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Figure 10.- Sketch of the characteristic behavior of root loci of periodic
coefficient differential equations
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